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\‘ ABSTRACT
-

Various weighted inequalities and weighted function spaces relevant to
degenerate partial differential equations are studied. The results are
applied to degenerate second order divergence form elliptic equations and
systems to establish continuity of weak solutions. The methods used allow the
consideration of very general classes of weights.

In particular the weights are characterized for several Sobolev
inequalities in terms of weighted capacities, a theorem is proven for weighted

reverge HSlder inequalities and a continuity estimate is established for

certain weighted Sobolev spaces.fii\
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SIGNIFICANCE AND EXPLANATION
Many physical systems which are in an equilibrium state are modeled by
elliptic equations. A simple example of such an equation is
Ve(w(x)Vu) = 0
where, for example, w(x) is the density of a plasma. The classical theory
for such problems deals with situations where M > w(x) > A > 0, i.e. the

"density" is uniformly bounded away from zero and infinity. In certain

situations degeneracies appear and @ becomes zero or infinite. In such

51 situations classical methods break down. One approach to this problem is to
prove weighted versions of certain inequalities used in the classical methods
in order to extend their use to degenerate situations. This is carried out in
the present work for an extensive class of weights w(x), and the results are
applied to a general class of elliptic equations.

Degenerate problems of this form appear in a number of areas including
plasmas, gas dynamics, and diffusion processes. In addition the use of
weighted inequalities is prevalent in physical problems which are set in
unbounded regions or which involve local singularities, and their general

understanding for a large class of w(x) should have potential applications.
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WEIGHTED INEQUALITIES AND DEGENERATE
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

E. W. Stredulinsky

Introduction

The main purpose of these notes is the analysis of various
weighted spaces and weighted inequalities which are relevant to
the study of degenerate partial differential equations. The
usefulness of these results is demonstrated in the later part
‘of the text where they are used to establish continuity for
weak solutions of degenerate elliptic equations.

The most important inequalities dealt with are certain
weighted Sobolov and Poincare inequalities for which the
admissible weights are characterized. Weighted reverse Holder
inequalities and weighted inequalities for the mean oscillation
of a function are dealt with as well. A much larger class of
degeneracies is considered than previously appears in the
literature and some of the applications are known only in the
strongly elliptic case.

Two approaches are taken to the problem of establishing
continuity of weak solutions. The first approach taken involves
a Harnack inequality and the second Morrey spaces. The first
applies to equations of the form div A = B, where A, B satisfy

the growth conditions

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041. This material is based upon work supported by the
National Science Foundation under Grant No. MCS-8210950.




Al < ux) [valP s a]_(x)up':l + a,(x) ,
A*Vu > A(x) [VulP - cl(x)up - Colx) ,
Bl < by A (x) [valP + b, (x) [Pu|P-L b, (x) wPl . by (x) .

A Harnack inequality is proven for weights u , )2 satisfying certain
capacitary conditions. 1Interior continuity follows immediately
from this, and a Wiener criterion is establish for continuity

at the boundary. This generalizes work of D.E, Edmunds and

L.A. Peletier (EP], R. Gariepy and W. P. Ziemer ([Gz], S.N. Kruzkov
[K], M.K.V. Murthy and G. Stampacchia [MS], P.D. Smith [SM], and
N.S. Trudinger [T1l].

A theory of weighted Morrey spaces is developed which
extablishes continuity estimates for a wide class of weighted
Sobolev spaces Wl'p with p > 4,4 the spatial dimension. This
is in turn applied to prove the continuity of solutions of systems
of the form div Ai = Bi' i=1,...,m where Ai and Bi satisfy
growth conditions similar to the above with p> d-e. In the non-
degenerate case this is due to K.0. Widman [WI] and, in moré
general form to N.G. Meyers and A. Elcrat [MYE],

It is necessary to mention related work of E:B. Fabes,

C.E. Kenig, D.S. Jerison, and R.P. Serapioni [FKS], [FJK] which
was done independently at the same time as the work presented

in these notes. The approach taken and the material covered differ
considerably but there is a certain overlap (see comments before

2.2.40 and the introduction to Section 3.1.0.).
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The following is a brief description of the contents of

each chapter. The reader interested mainly in the applications
should proceed immediately to Chapter 3.

Chapter 1 contains the basic analysis needed for Chapter 2.
The relationship between maximal functions, covering lemmas and

Lebesgue differentiation of integrals is reviewed. A calculus

for functions absolutely continuous with respect to a measure
is developed and the admissible weights for several new variations
of Hardy's inequalities are characterized. Finally, several
comparability results are proved for "capacities" and set functions
which appear later in the analysis of the weighted Sobolev
ineqpalities.

Chapter 2 deals mainly with weighted Sobolev inegqualities
and properties of weighted Sobolev spaces. The characterization
of weights for Sobolev inequalities is carried out in a very
general setting in the first section and is translated to a more
useful form in Section 2.2.0 where, in addition, some examples
are developed. The main thrust of Section 2.2.0 however, is
the development of results relating capacity, quasicontinuity,
convergence in weighted Sobolev spaces and weak boundary values
for Sobolev functions. Chapter 2 closes with a result on weighted
reverse Holder inequalities.

All direct applications to differential equations are

contained in Chapter 3. These include the Harnack inequality
as well as the interior and boundary continuity results for weak
solutions of divergence type degenerate elliptic eauations (3.1.0):

modulus of continuity estimates for Sobolev functions and functions
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of vanishing mean oscillation (3.2.0): and the continuity result
for weak solutions of degenerate elliptic systems in a "borderline”
case (3.3.0).

I would like to express my sincere thanks to William Ziemer
under whose guidance this work was completed. I would also like
to thank David Adams, John Brothers, and Alberto Torchinskv for

conversations pertaining to this material.
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CHAPTER 0

The following is a short list of conventions and notation to be
used throughout the text. _

Sections, theorems, and statements each are labelled with a
sequence of three numbers, the first two denoting the chapter and
section, the third denoting order within the particular section.

The Lebesgue measure of a set E 1is represented as |E| . K"
represents n-dimensional Hausdorff measure. The abbreviations
sup, inf will be used to represent the essential supremum
and infimum unless it is specified otherwise. B(x,r)" is the open
ball of radius r > 0 , centered at x . The specific space in
which B(x,r) is contained will be clear from the context. Sometimes
the notation Br = B(x,r) 1s used. Xg is the characteristic func-
tion of the set E, that fs, xg(x) = { ) X€E . = . The letter
¢ will be used to represent constants which may differ from line to
1fne but which remain independent of any quantities of particular
importance to the specific calculation being carried out. Lp(m,E)
is the space of equivalence classes of measurablé functions u:E -+ R

such that I Iulp do < , Finally, Vu denotes the gradient of u ,
.2 3u
tht 159 vu ( aX1 [ X X'} ) axd) .




CHAPTER 1

The results of Chapter 1 are of little direct interest from the
point of view of differential equations but are necessary tools in
proofs of the major theorems of Chapters 2 and 3. 1.1.1 and 1.1.8
deal with the relationship between covering properties, maximal func-
tions, and the differentiation of integrals. The basic
calculus for functions absolutely continuous with respect
to a measure is developed in 1.1.10. In Section 1.2.0
the weights for several variations of Hardy's inequalities
are characterized, and in Section 1.3.0 a number of

capacities and set functions are shown to be comparable.

1.1.0 Calculus Jn Measure Spaces
The basic motivation for the inclusion of Section 1.1.0 is the

desire to present in an elementary manner special cases of known results

which are needed in other sections.

J.1.1 Covering Properties, Maximal Functions, and Differentiation of
Integrals. Let Q be a topological space and (Q,w) a measure

space with w positive such that the integrable continuous functions

are dense in L](u,n) . For instance, this is true if » 1is a locally

finite regular Borel measure and Q@ s a og-compact Hausdorff space.

Recall also that every locally finite Borel measure on R" s regular.

T
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tet H= U H , where H 1is a nonempty collection of measurable
yeQ y y

sets B with yeB and 0 <w(B) <= and

: 1
Mf(y) = sup o6 L |f] dw .
BeH‘v w(8
It is said that M satisfies a weak L' estimate if there exists

=) >0 such that

)
w({MF>2}) s < I [f] dw
for a1l f e L'(w,9) .

Consider the following covering property for some collection

' {Ly}yeg :

1.1.2 There exists 9 >0 such that if E c Q@ 1{s measurable and

6c U L is a cover of E such that for every yeE there exists
yeQ

B ¢ GnLy , then there exists F, an at most countable collection of

pairwise disjoint sets,such that F <G and w(E) < < o(U B8) .
F

1.1.3 Proposition. If {Hy}yen satisfies property 1.1.2, then M

satisfies a weak L1 estimate.

1.1.4 Proposition. If w(R) <o , lcp<w and M satisfies a weak
1
L

estimate, then
I(Hf)pdw S ¢cy J |f|pdm
for all f eLp(m.Q) , where ¢y = Bg_%- <

1.1.5 Proposition. If M satisfies a weak L] estimate and f ¢
L‘(w.ﬂ) , then




(1.1.6) | ;13 sup {F(!BT L [f-fly)]dw: BcHy , diamB<a} = 0

for almost all y e . The convention is used that the supremum taken

over the empty set is zero.

1.1.7 Remark. (1.1.6) implies that f(y) s Mf(y) almost everywhere if

Hy contains sets of arbitrarily small diameter.

- Proof of 1.1.3. Assume {Hy}yeﬂ satisfies 1.1.2 and let E, = (Mf>2} .

: )
For each _veE1 ’ BBeHy such that WL [fldo>A . Let G be a
covering of Ex consisting of such sets and use 1.1.2 to get Fec@G,
F, an at most bountable collection of pairwise disjoint sets with
w(E,) < ¢, w(Y B), so that
A 1 F

(o c
(g,) B stil 1flawst| 1fd .
CARERE ‘*Hs" SALH .

Proof of 1.1.4. Given f e LP(w,2) , 1<p<w, it follows that f ¢

L."(w,n) since w(Q) <o . Without loss of generaﬁty. assume f 20 .
Let fA = x{f>A/2} f so that f < fk+x/2 and Mf < MfA‘*)‘/Z » but

2¢ Zc.I

“then w({MF>1}) < w((MF, >M/2}) s -Alj fdo = =1 fdo and

Lfﬂ/z}
I’nf"dm = p J: APV LMF > 23) dA
, s 2pe r AP-2 I f dod
] ' 0 {f>2/2}
: 2
| -ch]LfI AP7C da da
| 0

.2 4




1 '
L] * * - : ’
Proof of 1.1.5. Llet Lf(y) = lim sup {-TTB |f f(y)| do: BeH

diam B<a} so Lf(y) s Mf(y) +[f(y)| and

o({Lf >1}) < w({MFf>2/2}) + w({|f] >2/2})
2(c1 +1)

s——;——] 1] do .

If g is continuous and integrable, then it is clear that Lg=20.
Choose 9, continuous such that g9, * f in Ll(m.n) . Lfs L(f—gn) +
Lg, = L(f-gn) and so w{{Lf>2}) ¢ w({L(f-gn) >A}) <

—————

2((:1 +1) _
X J |f-gnl do +0 as n+e ., Thus Lf=0 almost everywhere. B




1.1.8 Covering Lemmas

The covering lemma 1.1,9 is a direct generalization
to doubling measures of a standard covering lemma for
Lebesgue measure, For nondoublinj measures this may be
replaced by Besicovitch-type covering lemmas; a very
general form of which is proved in [HRI; the proof

following the basic outline in Besicovitch's original

paper [B]. A more accesable reference is [G].

1.1.9 Proposition. If w is a doubling measure in a bounded

open set 9 , i.e. w(B(x,r))< <, w(B(x,2r)) for all x,r such
that B(x,2r) € @, then the covering nroperty 1.1.2 holds
with (L} being the collection of all balls B C Q with

Yy yeQ
Y € B.

Proof. Proceed as in (ST}, page 9.

1.1.16° Calculus for Functions Absolutely Continuous to a Measure. The
basic calculus for functions absolutely continuous with respect to a
measure « closely resembles that for w = Lebesgue measure,

If w §s a finite positive BOre‘l'measure on [a,b) and f:[a,b) +
R , then it is said that f is absolutely continuous with respect to «
if

-10-




(Ve>0 36>0 so that if ] w(l;) <&, where the I, =

i=]

(1.1.12) [ai'bi) c [a.b) are pairwise disjoint intervals, then

\ 121 (b)) - f(a,)] <e .

As a direct consequence f s left-continuous and in fact discontinuous
only on atoms of w . ‘
Ltet N = {ye[a,b): wly,x) =0 for some x>y , xe[a,b)} . N is

a countable union of disjoint maximal intervals of measure zero, and so
(1.1.12) w(N) =0 .

The results of the previous section will be applied to the measure space
[a,b) -N , with Hy consisting of all intervals [y,x) with x>y,

1
x ¢ [a,b) , so that Mf(y) = sup —-([y——-»—I fdo . The fact that
yex<b WX dpy x)

continuous integrable functions are dense in L1 (w, [a'.b) -N) follows

from this being true in L'(w, [a,b)) .

1,1.13 Proposition. Suppose f, g are absolutely continuous with

respect to w . Then:

t

(1.1.214) £ 1is of bounded variation and f(t) = f(a) + P: =N

where P: ’ N:' are the positive and negative variations of f on

[a,t) .

(1.1.19 P: ’ N: are absolutely continuous with respect to w and in-

duce measures p, n absolutely continuous to w so that

f(t)'f(a)+Iat)%dw




where g{ is defined as % =p-n for p, n , the densities of p,n

with respect to w .

‘ =
(1.1.16) ;l‘l;*m I[y,x) hds = h(y) ,

w almost everywhere for th‘(w,[a.b)) , and so

(1.1.137) lim %ﬁf%}l -4y,

xoyt

w almost everywhere.

(1.1.18) fg is absolutely continuous with respect to w and
f d
w almost everywhere, with f_ representing the limit from the right of

f . The asymmetry disappears if it is realized that f_(y) # f(y) only
f.(y)-f(y)

1f w({y}) # 0 , in which ca‘se %ﬂt(y) e €02 ) R and so
4ifa) (y)

(f,(y) - fly) oly) + (g,(y) - 9(y)) f(y) + (g, (y) ~aly)) (f (y) - f(y))
- w({y})

(1.1.19) If g2¢c>0 for some c , then 1/g is absolutely continuous

|
with respect to w and ‘ '11




w almost everywhere.

(1.1.20)

J[zl.l:o) %‘% fdo = fgla i J[a.b) w9 &

(1.3.21) If F:R + R {is differentiable, then Fof is absolutely con-

tinuous and

F'?f% , a.e. where f is

d (Fof) continuous
S o =
d Fof, - Fof
S i everywhere f s
+ . discontinuous.

A typical application of Propositifon 1.1.13 is the evaluation of
I )(w([t."'))"‘ A)*do(t) for a>-1 and 1220, where w is a finite
a,»

positive Borel measure on [a,») and w((a,»)) #0 .

Let f(t) = u([t.w).)'l' A so that f is absolutely continuous with
respect to w on any finite interval and -‘;‘;:-- -1 by (1.1.17,. Let b' =
inf{te[a,») : w([t,=))=0}, b' possibly = , and choose b such that
a<b<b' and w[t,*) 2c>0 on [a,b) for some c . Altering the
functfon F(t) = 1ot on (-»,c/2) if necessary to insure that it is
differentiable on R , apply 1.1.21 to see that Fof 1{s absolutely
continuous on [a,b) with respect to w and that

(e + 1) (w({t=))+ 2)® » 1f t is not
!'Fﬁ.i (t) = an atom of w

atl at+l
(w((t,=)+ 1) {-t}(sg(&.a))x* 2) ,if t is an
@ atom of w .

By 1.1.15 it follows that

%4

AN




(wlTbs=)) + 1) = (u([a,e)) + 2)°"!

- (a+1) ] (W([t.=)) + 1) do(t)
[.ob)‘Tb

t, ¢'l'h

where T, is the set of atoms of w in {a,b) and so

| tatreens 0% ale)
[a,b)

. (o(fa,=) + M - %m(tb.w)H )2
+

a

I S (GO LR b TS R Vg
1°'b

+ (o +1)(w([ty =)+ A)um({ti})] .

let b +b', recall that w(b',») = 0 , and make a few adjustments if b’

is an atom to get

[ ((lt)) + 1)® dult)
[aa.)

- ‘mﬂa,w[h A)"ﬂ

a+l

atl

toir DLt =)+ )% < (u(lt =D en)™!
ticT .

+ (@ + 1) ([t N+ 1) wl{t, D] ,

+ L =N+ N - e(eaen s )T




where T 1is the set of atoms of w in [a,») . A simple calculation

shows that

-sign a ja' (([t) + A)® do(t)

(1.1.22)
s -Slane (raa)+ 2)%

a+t+ ]

Proof of 1.1.14. This is a slight variation on the standard proof to

avoid the discontinuities of f . Let 6§>0 be related to =1, as

in (1.1.11), so that 1{1 [f(by) -fag)l <1 1f f{] w(l;) <& . Since

w([a,b)) is finite, w has at most a finite number of atoms of measure
larger than &/2 . Lgt these be located at Xpooeen X0 X < X141
Pick € such that t»(xi .x1+e1) <§, i=1,...,n, sogiven Xy <y<
Xytey then o[y ,xi+ei) <&, and so li’(x,i +e1) - f(y)] <1 . Pick
a partition a = 3y <3y < ... < am1 = b , which includes '{xi} and
{x1+ei} and for which m((aj , ajﬂ)) <§ , §=0,.. .m]-1 .

~ Given a partition a = bo < ...< b'“z ah,let a= <o <o Sy ®

3
b be a refinement including both {a;} , {b;} so that

mz-'l
L 1f(byg) - £6)]
.m'3-‘

R LR CH

n
. 21 lf(cxj) -fxp)] +

J=

t -f .
c,ng [£(csqq) - fley)l

J=1,...,n

Sy

T T R e AT Y <+ = OB - 17 o o



where Cy is the division pt to the immediate right of xJ and so
3 )

f,-1
n
PN RN LR R AT

n
+ jg] I£(x; +e,) -f(cxj)l

+ f(c, 1) - flc,)
ALY
t:k#x‘j

n :
< le |f(xj+ej) -f(xj)l *ntm o,

which 1s independent of the partition ‘{bi} » S0 f 1is of bounded varia-
tion. B

Proof of 1.1.15. From the above, it follows that f(t) = f(a) +P- Nt ,

where P;' . Nt are the positive and negative variation of f on [a,t) .

a
P: will be shown to be absolutely continuous with respect to w , and the

same will follow for N: by considering -f .
[ ]
Given €>0 , let & be as in (1.1.11), If J u(li)<6 for

i=1
l1 = ['1"’1) » patrwise disjoint intervals, pick a partition a; = c, 0
n,-1
by ™ ] +
e € <:1'“1 = b1 such that Pa1 3 Jgo (f(ci’jﬂ) - (ci.J» + ;‘T , where

X » x>0 . It is now clear that P: {s absolutely continuous




® b
| ‘1
P, - P,
i I 121 ‘1
« n«"']
s- 1§‘ JZO [fley gaq) - Fleg ) + €
< 2 ,
since
@ I|1-'| -
HE A SR RS

1.1.23. Since P: ’ N: are monotone increasing and left-continuous, they
induce measures p , n . To see that these are absolutely continuous to
w, let E be a set such that w(E) =0 . Given €>0 , pick &§>0,

as in (1.1.27) (with f replaced by P-at ) and V'relati:ely

open in [a,b) such that EcV and w(V)<s§. V= }-J-I I »
where the 11 are pairwise disjoint 1intervals, Ii =

(a1 obg) » 1=2,..., = and either I, = [a.l.b]) and a;=a or I, =

('l’bl) . Only the first case will be dealt with, the other being similar.

(V)-P + Le, P (P‘)

® b +6
b‘ (2 Pai a1 )4-6 for some 61>0
{=2

s 2,

AT gy | SMRT g -

Ty <y

oatition e o




since m([a.b.I N+ :{:2 m[ai * bi) sw(V) <6, Tf.ie absolute continuity
of n follows similarly. [

The Radon-Nikodym theorem now gives the existence of p , n , the ' i
densities of p, n with respect to w . Letting %—S =p-n, 1.115 fol-

Tows from (1.1.13) and 1.1.23. @

Proof of (1.116). Recalling (1.1.12), it is only necessary to show that
{"y}yc[a,b)-N satisfies property 1.1.2 in order to use Proposition 1.1.5
to conclude for h e L'(w , [a,b)) that

1 =
11;l+ m J[_y,x) hdw = h{y) a.e. w .

This being proven, (1.1.17) follows easily since

from 1.1.15. '
To show property 1.1.2 1s satisfied, let G be a collection of in-

tervals [-Ya'xa) » aeA, A some index set.

1.1.24. It will be said that F is subordinate to G if FcG and

1.1.25 It will be shown that there is an at most countable collection F
subordinate to G , in which case there is a finite collection Fy sF
such that

(1.1.26) w(U 1) <c2(U I).
I¢F I¢G




Due to the properties of intervals, there then exists a collection F2
subordinate to Fl which has the property that every point in
(1.1.27) U 1=y 1

IcF.' Ier
{s covered at most twice by intervals in F2 . Fz can then be split into
two collections F3 . F4 , with Fz = F3|JF4 » where the intervals in Fi ,
i = 3,4, are pajrwise disjoint. Then

(1.1.28) o(U 1) s 2u( U 1)

I¢F2 IeF1

for one of § =3,4 , in which case considering 1.1.24 to (1.1.28), it
is seen that property 1.1.2 is satisfied with ¢, = 4.

To show that there exists an at most countable collection F sub-
ordinate to G, let Y be the set of points Yo r © €A , such that
Y, 1s not in the interior of any interval (yB.xB) R .8 eA . It s
claimed that Y 1{s at most countable. For Ygo€Y s no point of [ya.xu)
can 1ie in Y . Pick a rational number r, e [ya"‘a) and pair it with
Yq + T Cannot be paired in this way with any other element of Y , so
the map y, * r, is a one-to-one map of Y into the rational numbers,
and so Y {s at most countable. The conclusion now follows easily since
to each pair of rational numbers r, s with Yypsr<sc< Xg for some
B « A, one such interval [yB.xB) can be associated, B8 denoted as

r.s
terval (y,.x,) » so there exist r, s rational with y <r<s«< Xy

8 . Given y ¢ UA [yqsXq) =Y » y 1lles in the interior of some in-
ae

and so y 1lies in one of the countably many intervals [y » X ).
Br.s 8|r-.s




and the proof is done. B

Proof of 1.1.18-1.1.20. The absolute continuity of fg and 1/g follows
exactly as in the Lebesgue meésure case. Using (1.1.17) then gives 1.1.18,
1.1.19, exactly as in basic calculus. 1.1.20follows from 1.1.15 and
1.1.18. &

Proof of 1.1.21. Since f {s bounded, it follows that F {s uniformly
continuous on the closure of the range of f , so that it is easily seen
that Fof is absolutely continuous with respect to w . Using (1.1.17)
agatn and.pmceeding as in the basic calculus proof of the chain rule,

1.1.21 follows. B

1.2.0 Weighted Hardy Inequalities
Tomaselli [TM], Talenti [TL], and Artola [AR] characterized the

weights for which a Hardy inequality of type (1.2.10) or (1.2.12) with
p=q holds. A simpler proof was found by Muckenhoupt [M1], which in turn
was generalized by Bradley [BR] to include the case q>p . The other
jnequalities dealt with in this section are not direct generalizations
of the original Hardy inequalities but are similar in nature. Their im-
portance stems from the fact that they arise naturally in the analysis of
certain Sobolev inequalities.

It will be assumed that u, A are positive measures on
(R y{-o,m} , K) , where K 1is the o-algebra generated by the Borel sets
B and the points (-=,»} ; and v 1{s a positive measure on (R,8) for

which there is a Lebesgue decomposition with respect to Lebesgue measure.




For notational simplicity, ( L \')(t)'”(p'” dt:)p'l will represent

1

sxp 9" when p=1, Vv being the density of the absolutely continuous
] 1

P P
be deferred to 1.2.123

part of v and < + = =1 . The proofs of the following theorems will

1.2.1 Theorem. For 1s<psq<e,

(1.2.2) ([;(J: g(s) ds)q du(t))l/q s ¢ (J:gp(t) dv(t) )llp

for some 9 >0 and all nonnegative Borel measurable g iff

1/q Prey o /p
1.2.3 -, d dt
.23 W erd [ o) a8 < o[ Pl o)

for some =3 <o and all re R and g nonnegative and Borel measurable;
iff

(1.2.4) W8 (e[ 5000711 at)'? s ¢
r

for some €3 <= andall re R . And, by a reflection,

(1.2.5) (f; (C.g(‘) ds)Tau(t))'/9 < c,(j: Pty av(t) )'/?

for some €y <= and 211 nonnegative Borel measure g {ff

r
-0

026 WD [ anes < o[ Pwsme)




for some Cy < and a1l re R and g nonnegative and Borel measurable;

iff

r
ro_ .. - 1/0"
(1.2.7) u‘/"([r,«])(j O A dt) AP
for some c <= andall re R, where v 1is the Lebesque density of v
(dv = v(t) dt + dv.) .
If the constants Ci » i=1,2,3 are chosen as small as possible,

then ¢3¢, s ¢ s pr1/p" pl/a ¢; - The convention 0-= =0 {s assumed,

11/p! is taken to be 1 when p' = o,

and p
Given u a positive measure on (A,K) and v a positive measure

on (B,B) , extend u so that u((R v{-=,=})-A) = 0. and v to have

infinite density on R-B , then it easily follows from Theorem 1.2.1

that

(1.2.8) ( L ( Ln(t . g(s)ds)q du(t))vq < °(L o(t)° au(t) )1/p

for some c <= and all nonnegative Borel measurable functions g iff

sup u]/q ([~=yr] nA)(I \'»(t)-”(p'”dt)”p. <o ., Theorem 1.2.9
r Bn(r,w)

presents two special cases of this.

1.2.9 Theorem. For 1spsq<=,

(1.210) (f;(j: a(s) ¢s) au(t) )" s c1([: Pty o) )P




for some €y <= and all nonnegative Borel measurable functions g , iff

< ®

1/q 5-1/(p-1) )P,
(1.2.11) sup » ([O.r])(r 9 dt) b

r

And

(1.2.12) (r( o(s) &5 au(e) ' sc(rgp(t)dv(t))”p

for some 23 and all nonnegative Borel measurable functions g 1iff

(1.2.13) sup u/9 ([r.@])(r see)”1/(p-1) dt)w b, <.
Osr 0

And, as a consequence,

a2 ([ s sfan) o Poam)”

for some c3>0 and all nonnegative Borel measurable g i{ff

¢ sup u'/9 ([r.wl)(r Sy VD g )P Ly <o
0

Osr

1/ « -1/(p-1 = o
‘ ::gu (- .r])(I v(t) (p )dt) by<e=

where Vv 1is as in Theorem 1.2.1.

If Cy » 1i=1,2,3, b1 » 1=1,2 are chosen as small as pos-
sible, then b1 s ¢ ‘pllq p']/p' b; for 1=1,2 and




max{b,,b.} < ¢4 < pllq p"/p

t
max{bz.b3} . The convention Jo g(s) ds =

10
- I g(s)ds for t<0 1is used in (1.2.14) and O += = 0 is used
t

]
throughout. Also p‘”p =1 for p' =,

The inequalities dealt with in Theorem 1.2.16 depart somewhat from
the structure of the classical Hardy inequalities, but their analysis is
similar. They arise naturally in the study of certain Sobolev inequalities.
It is somewhat remarkable that (1.2.23) and (1.2.24) are equivalent since
in general their left-hand sides are not comparable unless |A| , |u| <=

and A(E) s ¢ u(E) .

1.2.16 Theorem. For l1spsq<e,

(1.2.17) (E(EE g(a)dgdl(s))q dum)l/q ‘°1.1(J: L) dv(t))'llp

for some c] 1 < o and all nonnegative Borel measurable g i{ff

(1.218)  w/(-r]) r a(s) Als,=]ds s c, 1(J’ Pie) o) )7
r L o

for some 1 <o and a1l re R and g nonnegative and Borel meas-

urable iff

(1.2.19) sgp ﬁ”q([ﬁ.r])(f: (L':-,[(%Fl)‘/(p-” dt)vp' =by<=

And, by a reflection,




. (1.2.20) (J:(E‘ j: o0 do r(s))d ault) /" s &2 (J:gp(t) dv(t))”p

for some Cig<™ and all nonnegative Borel measurable g 1{ff

]
(22 WM(teeD) [ als)abmrlas sep (] P0) avin))'?

-t

for some Chgp<e and all r ¢ R and g nonnegative and Borel measurable,
?

iff

. (p-1) '
(1.2.22) sup u""q([rw])q_:(l‘f%ﬁ')ﬂ)w ! dt)”p =b, <= .

And, in consequence,

o2z ([ “': ato) ds| ) ()" s ¢ ([ o) i) ”?

for some € 3<= and all nonnegative Borel measurable g iff
]

a2z ([ ][ j: sto) awan(s)|* ae) <oy 7 Prerae)”

for some c2.3 < = and all nonnegative Bore} measurable g which are
bounded and have compact support,

iff (1.2.18) and (1.2.21) hold,

1£f (1.2.19) and (1.2.22) hold,

where v 1{s as in Theorem 1.2.1.

The conventions I
S

t S :
9(0)60'-L glc)do for s>t , - :

-25- . ; ]




Pre o
L\L»%tTl = 0 if the numerator and denominator are ejther both 0 or both

o ,and 0+= =0 are used.

t
1.1.25. If the integral rl g{c) doda(s) in (1.2.24) is not defined
-0 Jg
t
in the classical sense, that is, if t 1{s given and I g(o) do takes
s

on both positive and negative values and is not in L](A) , then it may be
given an arbitrary value without affecting the theorem. Care must be
taken if for fixed t , r g(c) do s of one sign and is.not in L](A) .
in which case the 1ntegralsl.2.25 is given the value «» or -=» , depend-
ing on the sign of It g(c) do . The assumption that g 1is bounded and
of compact support ins (1.2.28) is added solely for use in the applications;
it is not necessary here.

If ci' are chosen as small as possible, then b'l < c:z.1 < c.'.1 <
/9P p for 11,2 and max{bybyl s ¢, 3 scy o8
2p}/q 177! max{b, ,b,} -

Remark. Theorems 1.2.1, 1.2.9, and 1.2.16 are equivalent. Theorems 1.2.9
and 1.2.16 will be proven directly from 1.2.1, and Theorem 1.2.1 may be
recovered from 1.2.9 by a change of variable from [0,=2] to [-=,»] ac-
companied by appropriate choices of measures, and from 1.2.16 by choosing
A to be a point mass at « or == ,

It would be interesting to extend the preceding theorems to the case
qQ<p . The following theorem extends the last part of Theorem 3 to the

case q=1 . The global nature of condition renders it of no use in prov-

ing Sobolev inequalities. r r




1.2.26 Theorem. For lgp < =,

(1.2.27) J: [: ”t 9(c) daldx(s) du(t) < c(r gP(t) du(t)

S =g

1/p
)

for all nonnegative Borel measurable g iff

i 1/(p-1) 1/p'
AMewm,t t,o] + A(t,» -co, ¢ P
(1.2.28) ( [ [(_[_Lm_._J_,THL_qL] dt) ce.

= 5 s 0 for the integrand of

oo

v as in Theorem 1.2.1. The conventions

t
(1.2.28), O-= =0, and I

s
g(o) do= -I gloc)do for s>t are used.
S t

Proof ‘of Theorem 1.2.1. The main substance of the result

i{s the sufficiency of {nequality (1.2.4) . Assume
(1.2.8) and p>1. Let h(t) = (r \',(s)"'/(P"l) ds)]/p' and I_=
t

"{t: u(Ew,t]) = 0} so that u(I_) = 0 . From (1.2.4) it follows that h = =

onlyon I and so h<e on T=R-1_.

1.2.29. Let Io be the interval IO = (t: h(t) =0} so that h 1s locally
absolutely continuous on T -I0 . This combined with the continuity of h

on T leads to
(1.2.30) ) h(t) = - r h'(s) ds for teT.
t

,2.31. If ¢g>0 and v = » on a set of positive measure, then (1.2.2)

is true; otherwise g =0 a.e.on {v=w},andso g =
p'm" g(Gh)‘/p(h')Vp' a.e. in T . Now using Holder's inequality and
(1.2.30), and recalling that u(lR-T) =0 , it follows that




(r (j: a(s) ds)? au(t))”/
p.p/p'([:q: 9p\?h)q/pg(t)q/p' du(t))l’/(!

» - /(S - \p/q
(by using Minkowski's inequality)

o/p* P~ VP e Pl
o [ P[P (e o)

(by (1.2.4), where I' = {t: u[-=,t] ==})

< pnp/p' g'] p/qr g vhu/q([.eo s]-[ ) ds
(using 1.2.32)

< prP/®' & L J"; P ds
(by (1.2.4))

1.2.32. [~,s)nl' is an interval [-9,s'] or (-»,s') on which
w{(-=,t]) 1is finite. Pick s" <s' and let @ be the restfiction of

p to (-=,s"], and let w be the reflection of w , i.e. w(A) = w(-A) .
Now apply the results of 1.1.13, specifically (1.1.22), with o and

A= p({-=}) to get that

(1.2.33) WP (Lemt]) du(t) s pu!/P([-=,s"]) .

J[“‘o s"]

Let s*+s' and use u“lp'({s'})u({s'}) = ul/p({s'}) if s' 1s an
atom of u to get (1.2.33) with s" replaced by s as required.




If p=1, then g

(R(XSD) auts) :

< r g(s)u”q([-“.s]) ds by Minkowski's inequality
«00

s ¢ r g(s) ess inf v ds

(s,=)
$ c3£ g{s)v ds .

The fact that (1.2.2) implies (1.2.3) follows by first replacing
g by gx(r’“)nA » where R-A supports the singular part of v and
IR -A| = 0 and then reducing the interval of integration
with respect to u to [-=,v].

The proof of the implication (1.2.3)=(1.2.4) is brokendown into 3 cases
depending on whether (Jﬂi\'a(t:)'”(p"l)dt)p"1 is zero, strictly positive
but finite, or infinite riv'e(:z:'ll that for p=1 this integral represents

(sup) G" ). In the first case (1.2.4) is trivial. In the second case,
(P,

if p>1, set g-\')']/(p']).andif P=1 set g=g =yx5 » where
n

B, = {t: \':'1(1:) z-%+ sup s , and let n -+ o to achieve (1.2.4).

ry®)

1.2.34. In the third case it is necessary to construct a function g

such that g=20 , r9p5 dt <= while rg = @ , {n which case,
. r r

recalling the convention 0 +» =0 , 1t is seen that u({-=,r]) = 0 and
(1.2.4) 1s proven.

e | -29- .




To construct g as in 1.2.34 it is first assumed that v > 0 a.e.;

otherwise let g be = on {v =0} and zero elsewhere. For p>1 let

E, = {t e (r=): (1) oty <2M . 1f [E,| = = for some n , then

pick g such that g ¢ Lp(En) » 9 ¢ L](En) » and g = 0 elsewhere.

Otherwise -|E | <= for all n.

I IE, 201}/ (p-1) rG VN Lo, 0 pick %k fteratively
n=-c r
, ' k-1
such that 10 = 0 and for n = 2.20 iz it holds that
. +1 -
Sk = X lEn| 2(" )/ (p-1) > (k*])u

nks|n|<nk+ik .

2
for a fi?(ec-l a> 77 .

S1+pn)/ (p-1) \I/P
Let g(t) = if nosinf<n, and tcE .so

(k+1)? s,
[ § Sl 200
r n=-o w  (k+1) Sk
- I -(-';-]‘)—2;; o Jioen, £ | 20w/ (m)
. ;
" ko (e <7 |




" (n+1)/(p-1)
r g = 2~1/p 3 IEn| 2
r pe-e ((k+1)¢ 5,)'7P

A 2 \/p -
- o ((k+1;2 s ) nsinfen.,. ol 2D
k k* Tk

w s 1°1/p o
= -]/p .i_.__ 2 z'llp 2 (k"’] )G(]']/D)'Z/p
k=Q (k+1)</P k=0

since a(‘l-%)- %> 0.

For p=1, inf v =0, so pick a set A of positive finite meas-

ry)

ure such that infv =0 . Either Vv =0 on a set B of positive measure
A

in which case take g = on B and zero elsewhere, or else en can be

€
ntl _ 1
chosen such that ¢ +0 , —én_s 7 and [E | >0, where E = {teA:

€nsy S V(t) <€} . For this case Tet a = [{tcA: U(t) < el so that

€ €
n-ntl 1
: 3, - a1 &, on En ’
Il =a -2 ,; »and et g= . It then
0 elsewhere

follows that

« € -¢
1 -1
g = E n - n+ [ QN
J:'- n'z-o IEq! 4 " % Sp

T R -
ngo (‘ gn ) : ngo z "




= Eo <o,

The second half of the theorem is proven by replacing u , v , ¢
by ﬁ ’ ; ’ § » Where ﬁ(A) = u('A) ’ G(A) = V('A) ’ §(t) = g('t) »
and ustng [ §(0) dice) - jA a(t) du(t)

Proof of Theorem 1.2.9. Restrict u to A= [0,»] and v to B = [0,») ,
and then extend them as in (1.2.8). If (1.2.10) holds, then (1.2.2) holds
with the extended measures since if g > 0 on a set of positive measure
in (-=,0) , then the right-hand side of (1.2.2) is infinite. (1.2.11) then
follows from (1.2.3). Conversely, if (1.2.11) is true.'then (1.2.4) trivially
holds for the extended measures, the condition for r < » reducing to that
of r=0, and (1.2.10) follows from (1.2.2) by taking g with support in
[0,») . The equivalence of (1.2.12) and (1.2.13) follows similarly.

Assume (1.2.14). Letting g have support in [0,%) and (-=,0]
respectively, it follows that (1.2.12) and its reflection i

| (Ii (Lo a(s) ds)q au(t))'/9 s °3(Ji P(t) dut) )'l/p

hold, which then implies (1.2.13) and its reflection, and so (1.2.15) holds.
Conversely, if (1.2.15) is true, then both (1.2.12) and its reflec-

tion hold so that




T ST e —r—p s

J:”ot g(s) ds ‘q du(t)
- ]:(]: als) as)‘f ) + [ ([: a(s) ¢s )7 du(t)

-0

< (¢, (]: P& () ") + (e, [i P ao() )

s max{clq. c4q}(£ aP(t) d\)(t))q/p . B

Proof of Theorem 1.2.16. The equivalence of (1.2.17), (1.2.18), and

(1.2.19) will follow from that of (1.2.2), (1.2.3), and (1.2.4). The
equivalence of (1.2.20), (1.2.21), and (1.2.22) then follows from applying
the reflection A <+ -A , as in Theorem 1.2.1.

It will now be shown that (1.2.17) == (1.2.18) = (1.2.19) =»(1.2.17).

(1.2.35) J: J: g(o) dodr(s) = f:g(o))\[o.v] ds ~ by Fubini.

Assume (1.2.17), so

(E‘ (J: o(6) At s d"(t))”q £ (J:. P o).

Replace g by ¢ *X(r,) and reduce the interval of integration on the
*
1/p
Teft to get uuq[-«'.r] r g{s)A[s,»] ds s €11 (r gP(t) dv(t)) , and
r ? N em

(1.2.18) s verified.
Assume (1.2.18), replace g by g “Xp where A {s the support of

the singular part of v , to get




p

(1.236)  uV%er] [ atontsed a5 s ¢, ([T Plor s e’
r P e

Let I0 = {t: y[-=,t] =0} so u(Io) = 0 since I0 is an interval. Let
Jo = {t: A[t,=] = 0} and J_ = (t: A[t,=] ==} . From (1.2.36) it is

seen that v = » a.e. on the interval I - I (let g = 9,

s = O(t) 5 s w
X{S<n}n(d -1 )a(-=,n) )s S0 if v.(t) D , then v (t) on
C 1] AT [t,=]
P
. Al t, = _ - -
J, - IO using the convention that N3 =0 if Aflt,»] and v(t)

are either both 0 or both = . Also v,(t) == on Jo using the same
convention.

If it doesn't hold that g =0 a.e. on (J_ - Io) v J0 » then

(1.2.37) W erd [ atsras < ¢ ) [ Pl Sutnyae
r Y r
0 s Jo v, .
otherwise let g(t) = »soon R-1,,g(t)=
Y tfw » Otherwise

3(t)A[t,»] and P9V = ¢° v, - Using g in (1.2.36) then gives (1.2.37),
but since (1.2.3) =» (1.2.4), it follows that u”"[-«»,r](r 5, V(-1 4 dt) /p
r

$ Cpy s SO (1.2.19) is verified.
Assume (1.2.19). Using (1.2.4) =»(1.2.2), it follows that

(L([ store) w) oo ([ Prorsymae)”

Replace g(s) by g(s)Als,»] and use that A[t,»]v,(t) < v(t) to get
(1.2.17) and so the circle of implications is completed.

[
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It remains to show that (1.2.23)=»(1.2.24) =» {(1.2.18), (1.2.21)} =»
{(1.2.19), (1.2.22)} =» (1.2.23). Recall 1.2.25. (1.2.23) =(1.2.24)
is trivial. To show (1.2.24) = (1.2.18), first reduce the interval of

integration on the far left of (1.2.24) to [-=,r] and -eplace g by

g X(r,=) to get ;

W/9er] [ glsRIsie] 65

r @'

-( In ]: o(o) warts)|* au(wy)

< c2’3(J: Pt i)’

. t
for bounded g of compact support since J

S
s, t < r . Take monotone limits to get all positive measurable g . In

a similar way (1.2.24) =»(1.2.21). {(1.2.18), (1.2.21)}=>{(1.2.19),
(1.2.22)} by the first part of Theorem 1.2.16. From Theorem 1.2.1 it
is seen that {(1.2.19), (1.2.22)}={(1.2.2), (1.2.5)} , with u(t) re-

placed by ;’ttw so replacing g(t) by g(t)A[t,»] and using that

9(0)X[p ) 90 = O 1f both

A[t, @] V,(t) < V(t) , it follows that

(CL L oo 00| orto)? )™
s (J: (E I: g(o) dad)k(s))q du(t) )”q
(LA [ s wans) ()

([ ([ stontod @)’ aun)”

([ ( ji (M=o &) du(t))

e alall G,

' - 1/p
< Zp]/q p"/p max{b] .bz}(r gp(t) v(t) dt) ,




and the proof is complete. B

[od

Proof of Theorem 1.2.26.

'££|Ltg(o>dc|dx(§) ;m(t)

= J: (E glo)r(o,>] do + J: g(o)A[-»,0) da) du(t)

X(09°] ya>t

= r 9(a) r f(o,t) du(t) do for f(o,t) ={0 ,g=t
- - A[-=,0) ,0<t

(1.2.38) B P TORIOR”

for h(O’) = X(Gn‘”]}l['“so) + A[""’U)U(U’“'] .
let E, = {t: h(t) =0}, E_={t: h(t) ==} .

Assume (1.2.27). Replace g by g Xp » where A is the supbort of
the singular part of v to get

' A 1/p
(1.2.39) r g{c) h(c) do < c(r 9" (t) v(t) dt)
-0 -0l
From this it is easy to see that v == on E, so that v (t) = lp-((—))- = ®
h(t
P ® -
on E_ using the convention for h\.’ : that — =0 . Also V,(t) ==
0 WP (t

on EO using the ° = ) convention for Sty If it i{s not true that

g=0 a.e.on EjuE,, then

B Ry Tl o NS

(1.2.40) fg(s) ds s ¢ (J: gP(t) 9, (t) dt:)]/p R

'
14

E \




[}

0 » Eg v Ey
otherwise let g(t) = , and substitute g in (1.2.39)

h E s elsewhere

- - - p-1
to get (1.2.40). Assuming (r v, (t) 1/(p-1) dt) = o Jeads to a

~ contradiction with (1.2.40) using the construction in Theorem 1 since

either (E \';*(t)'1/(9']) dt)p.'| 2o or (Jo \'),(t)'ll(p'” dt)p-] = o,

- .- " p-1
1f (r 5.7V 1) g) 20, then (1.2.28) is trivial; otherwise
0D

for p>1 Tet g(t) = v,(t)"V(P1) 44 (1.2.40) to get (1.2.28). For
p=1 et g(t) = Txre ey 10 (1.2.40), and let n+ = to aif-
ferentiate the integrals and achieve (1.2.28).

1/(p-1)
) implies that

p
Assume (1.2.28). The integrability of (%—

P .
!'-\-’- <® a,e., and so considering the %' 0 convention, off a set of

positive measure,
(1.2.81) efther V(t) =0 or h(t) =0 for a given t .

Also it can be assumed tﬁat g=0 a.e. on {t: v(t) = »} since other-

wise (1.2.27) is trivially true. Considering this and (1.2.41) it follows
-1/ Pey NI/P

that g(t)h(t) < g(t) v ”p(t) (%-(%)-) a.e. and so Holder's inequality

applied to (1.2.38) gives (1.2.27). m

1.3.0 Equivalence of Capacities
The set functions which arise naturally in the analysis of the

Sobolev inequalities treated in Chapter 2 are difficult to work with in




their original form except in special cases. In the present section they
are shown to be comparable to more familiar capacities and. set functions.

Let (M,F,v) be a measure space with v positive, and let
HA‘D(V,M) be a set of real valued F measurable functions on M satis-
fying the following properties. N(lj’p(v.M) is closed under composition
with functions f e N={f e C°(R): f(0) =0, f' is bounded, and
f'20} . There is a map |D| :ug’p(u,n) - Lp(v.M) such that

(1.3.1) (I [Df o 6|P dv)VD y (I [ (6)1P [08]P dv)llp

for all ¢ e ua'p(v,n) » where the notation [D¢| = [D{(¢) and a ;b
i#f d7!
If He H;’p(v,M) » H closed under composition with f ¢ N and

a s b < da has been used.
Tsp<o, AcM, then let

CH’p(A) = 1nf{J |Dq>|p dv: ¢eH, 621 on A},

1 ‘ -(p-1
Ky, p(A) = 1nf{(Io ﬁ;(t)"’("'” at) (e-1), oeH , 621 on A} .

is the density of the absolutely continuous part of u; » the distribu-

= 06| av , i.e.,

a®
)

tion measure of u, with respect to ¢ , where du

¢ ¢
u;(E) = I_] ;) ID‘Mp dv . The conventions are used that

1 -(p-1) ‘
o* -1/(p-]) = -* = e o
(L u¢(t) dt) . ((1)?:) u¢(t) if p=1, and 131’ if
Ge @




1.3.2 Theorem. KH,p(A) a

Cyplh) for AcH.

dP
Proof. Let Hy = {6 e H: 21 on A} , so Hy {s closed under composi-

"tion with f ¢ N* = {feN: f(1) = 1) .

(1.3.3) i < R

since IIR ﬁ;(t) dt < LR du, = I [06[P dv , which is finite since

¢

1
X3 Hs'p(v.M) . Given f e N » let g=f ;s0 Io g(t)dt =1 and

hgm.hmmmwwmmmmmmmeum

measureon R, a=0, b=1, o=1,and I =R, toget

Vo 1t -(p-1)
1nfj |of o¢|pdu " (f nr(t) V{p-1) dt) . Taking the infimum
N* @ Vp 9

over HA gives KH,p(A) n

p Cy (A) since the function f(x) = x {s in
p P

N* and ”A is closed under composition with functions in N* . g

Let (M,F,A) be a measure space and N]’p(v,M) be a set of real-
valued F measurable functions closed under composition with f ¢ N' =

{f eC": f' 1is bounded and of one sign} and on which |D| is defined

as before. If H gw"p(v,u) » H closed under compasition with f ¢ N' ,

1spc<eo and Ac M, then let

Qmm)-mquupw:¢gunﬂum),
' ¢21 on A,Iod).-O} >

koW = tnfl[ (ool vz g catlom
$<0 on A.IOdA‘” ’

LN



1/(p-1) -( -1)
Ry p(A) = inf{(jo (—‘.{?ﬁ)—*ﬁ at)

¢€Ha QSO on A]’.

v N/ (p-1 <{p-1) uy
The conventions (E(M)/(p )dt) = inf -—-u-Q(—E)-— if

iy(t) : (0u=) AP({02t})
p=1, inf== if G=9 and 3=0, 2=0 for the ratio
6
0 |
Alozt)) are used.

~%
Hy(t) |
A1l of the expressions above are comparable (equal if d=1) , ex-

cept for one pathological case, this being if
(1.3.4) 3¢eH , $s0 on A such that A({¢2t}) == for some t>0.

It is clear that this is impossible if A(M) <« . In applications
A(M) 1is typically equal to one.

1.3.5 Theorem.

(R)

(1.3.6) - °KH’p(A) mdp “

if (1.3.4) does not hold,

(1.3.7) ‘ CH.p(A) Ndp Cﬁ’p(A)
if A(M) =1,
(1.3.8) : If (1.3.4) holds, then RH.p(A) =0

Remark. Under fairly general circumstances, it is possible to show that

another comparable expression is

A5+ =

B i s 0

wraltss s



P
1nf{J-—-—LQQl—dv(x): deH, $s0 on A,
AP ({920(x)})

inf{t: A({¢2t}) = 0} = 1} .

Proof of Theorem 1.3.5. (1.3.8) follows from the definition of kH b and
]

(1.3.3). (1.3.7) follows by replacing ¢ with 1-¢ and using f(x) =
1-x in (1.3.1).

1.3.9. It can be assumed that there exists a ¢ ¢« H with ¢<0 on A
and A({¢>0}) > 0 since otherwise RH p(l\) = » from its definition and
the %- 0 convention, and E“ p(A) = » using the convention inf = =

G
if G =@, since it would be true that I ¢d\ 50,
1.3.10. In addition to 1.3.9, assume that (1.3.4) does not hold.

Given ¢ ¢ H with ¢ <0 on A and b = inf{t ¢ [0,):
A{{¢=2t}) =0} (b=w possible), then b>0 by 1.3.9, and 0 < A({p2t}) <=

*

dus
AP({e2t}) °* |
Cgp <o forsome C , C {f Kg (0,b) , K compact and te K since

by 1.3.10. If dv' = then v'(K) <= and 0< C, s A{{e2t) <

A{{¢ 2t}) 1is monotone and u;(R) <o , Applying Lenma 1.3.14 with I =
(0,b) , a=0, and o(t) =r({o=2t}) , it follows that

- bs.p 1/(p-1) \-(p-1)
A ({¢2t})

(1.3.11) { = 1nf{I(o . () aul(t): 9cF, 920, and

L . L:s(t) A({¢2t}) dt =1}

-4]1~




for both F=C(R) n L”(R) and F = c;(o.b) . Let

L={geC(R) nL”R): g20,
0
Eg(t) A({¢2t}) dt +[ g(t) A({¢st}) dt <= , and

-

0
J:g(t) A({¢p2t}) dt - I g(t) A({¢st}) dt = 1

b
Considering all g* = g(J g(t) r{{e2t}) dt)"l for g ¢ L and noticing
0

b
that Jo g(t) A({e=2t}) dt = r g(t) A({¢2t}) dt 21 for g e L by the
0
definition of b and L, it follows that (1.3.11) with F = C(R) n L®(R)
is no larger than

(1.3.12) 1an aP(t) du*(t) .
gel ¢

But L contains F = Cz(o,b) » S0 the opposite inequality is true, there-
fore (1.3.11) and (1.3.12) are equal.

t
0
so that L: g(t) A({¢=2t}) dt - I g(t) A({¢st}) dt = J f(¢) d . This

t . 0 t
Now let f(t) = L g(s)ds using the convention that I =z . I

holds because L: fr(t) A({¢2t}) dt = [: fr(t) A({f(o)2f(t)}) dt since
f'(t) = 0, where f 1{s not one to one, and so a change of variables gives
()
Ef‘(t) AM{g2t}) dt = L M{gat}) dt
(0)
= f: AM{f(e)2t}) dt
(0)

f(e) dr

[f(o)zol
since f(0) = 0 , and then a similar calculation handles the other




integral. It is now clear that

r inf | gP(t) du*(t
tnt [ oPe) @i

. 'Inf{J £ (6)° |06P dv: FeC, f 20,

(1.3.13) { :
f' bounded, f(0) =0, f(¢) ¢ Ll(k.ﬁ) ,

L and I f(o) dA = 1} .

Finally, using (1.3.1) and taking the infimum over ¢ ¢ H with ¢ <0 on

A and J¢ dA =1 , it follows that Kﬂ.p(A) Ndp C“’p(A) ,» Since H s
closed under composition with f of the type described in (1.3.13), one
of which is f(x) =x . &

1.3.14 lemma. Suppose v is a positive Borel measure, o:R + R s

a Borel measurable function, a,be R v {-=»,®} , a<b,and I is an
interval, possibly unbounded, such that v(K) <® and 0 < Cy s o(x) s
Ck <= for K compact, x e K and K c (a,b) ¢ I, then

(1.3.15) ;:; L gp(t) dv(t) = (Lb (%)T/(P'” dt)-(p-]) .

where F may be any sugcol’lection of G={g: R+ R: g is Borel
measurable, g 20, J g(t) o(t)dt = 1} which contains G n c;(a.b) .
a

Vv 1s the density of the absolutely continuous part of v . The convention

(Lb(%%% )1/(p-1) dt)-(p-ﬂ . (mz)g will be used if p=1 .
a,
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Proof. (1.3.15) will first be proven for dv(t) = v(t)dt both with
F=6 and F=Gn Cyla,b) . Then Lemma 1.3.16 will imply (1.3.15) in
the general case for F = G n Cg(a,b) . It then follows that (1.3.15) is
true for all intermediate subcollections of G .

Assume dv = v(t)dt . Once (1.3.15) is proven for F = G , a smooth-
ing argument will be given to prove (1.3.15) for F = G n Cgla.b) .

If p=1, then for x ¢ (a,b) 1let g, = Xq (L o(t) dt)'] .
. n

[x-%- s x-i%] s which is defined for large n since then In c (a,b) .

b
It is now seen that I gn(t) o(t)dt =1 and
a

'L oh(t) dv(t) = L oP(t) S(t) dt

- (2n j 3(t) dt) (2n J o(t) dt)”!
Iﬂ Iﬂ

Vix
o(x

->

for almost all x ¢ (a,b) . Therefore

ajds

1nf] gP(t) dv(t) s inf
g€G I . (anb)

In addition,

] P(e) avie) = | aPe) S(e) e
r I

Qj<cH

N Ib gP(t) o(t)dt inf
a (a\b

= inf i .
(arb) ©




T o e

If p> 1, then (1.3.15) will be proven for o =1 , in which case
makihg the substitutions g = g'c and v = 3’ and recalling that 0 <
o<o on (a,b) , it follows that (1.3.15) holds for general o .

Assuming o = 1 , an inequality in one direction is obtained by
-=1(p-1) /(P -, -1/(p- -1
letting g = X(a,b) ¥ /(p-1) ([ v(t) Vip-1) dt) as long as
] a .

b o -1(p1)
I v(t) dt < = , otherwise a construction virtually identical to
a

that in the proof of the first Hardy inequality gives g such that
b b -
J g(t)dt = =« and I gp(t) v(t) dt < » and so, letting a, =

a

max{a ,-n} , b_ = min{b,n} ,

n
E, = (gsn} n (an,bn)
and
J° at)™!
9. *9X ng t)
n En 3 T By
b
so that I gn dt =1 and
a

b b b
P3d P3d dt)"P
L 9p v ts(Lgvt)(Lngn )

-0 as n+ow,

the same inequality follows.
The opposfte‘inequality is a consequence of Jensen's inequality.

The inf is not increased if only g ¢ 6 supported in (a,b) are con-

sidered. Given such a g , let 9, be as above.




T T ——— —

TE T YNV YT s ot T

(r G ey M (-D) dt)'(p‘”

)-(P-” _ [

- <1/(p-1) _-1

b -
< I gg(v+e) dt
a

b

by Jensen's inequality since I 9, dt=1.
a

Let ¢ + 0 using the monotone convergence theorem on the left, then

b
b .
ng\':dtt ab

( L 9 %, dt)p

as well by the monotone convergence theorem, and so the opposite inequal-

p

9" Xg v dt
n

b
-+ J gp\'adt
a

ity holds and therefore equality as well.

(1.3.15) will now be proven for smooth g . Give;l ge G, pick
9, bounded and positive with compact support in (a,b) such that 9t 9
in (a,b) . Let §, bea C® approximate identity with §p2 0
J 8 " 1 , and the djameter of the support of S 0. Thus Gm *9,
has compact support in (a,b) for large m and is bounded independent
of m, so

b

b
tn [ g 46,00t = L g, odt

and

" r( 1 b P
m g *6 vdt-I g, Vdt
Mo ly RM y M

by the dominated convergence theorem since V i{s fntegrable on compact




subsets of (a,b) and o is bounded uniformly away from 0 ,= on the
support of g n*sm .
The monotone convergence theorem now leads to
b b
Tim HmI gn*sm = I go =1
e g J3 a

and

b P s b ps
1im Hm’ (gnnsm) v dt =I 9" v dt .
a a

e me
From this can be extracted a sequence {fk} , fk =g, * Gm such that
k K
- ' b b - b -
f_ e C.(a,b) , J f,o+1, and I 3 dt+ gpvdt. Letting
k 0 a k a k a

f b b
’k = -5—-'5——- , it follows that I ?ko dt =1 and J fﬁ vdt -+
I fk o dt a 3
a

b
I gpi dt and 1.3.14 is proven for smooth g9 . #
a

1.3.16 Lemma. If v {s as in Lentma 1, then inf I gpdv =
1an gP% dt , the inf being taken over G n C';(a,b) .

Proof. Pick s a support of the singular part of v with |s] =0 and
O, open such that s cO , a,be O, s and [on| + 0 . Since o, isa
collection of pairwise disjoint open intervals, it is easy to construct

C;(a.b) functions ¢n.1 (each °n,'l = | off of a finite number of the

intervals) such that O i X(a,b)-0 everywhere on (a,b) with 0 s
]
n
$p,gsToand o . =1 on (a,b) -0, . It then follows for g ¢ G n

co(a.b) that




p
}jﬂ J (9 6,40 tv = I ¢ X(a,b)-0, ®

-J P Vdt
(a,b)-0,
_and
b
Hmj g¢n1°dt=I godt ,
{40 3 ’ (a,b)-on
SO
b P~
1im lim I (g¢n i)pdv = J g vdt
e joc ’ a
and
b .
1im 1im J 9 ¢ ; dt = I gdt =1.
Mo f-e s a
g¢ i
nk! k
From this extract a sequence 9 * 5 » SO that 9, €
gé o dt
h Ml

6n c;(a.b) and

1im I gﬁ dv = I gP v dt .,
ke

and the result is proven. B

——r

|
|
!
!




CHAPTER 2

The results of Chapter 2 form the foundation on which Chapter 3 is

built. For the most part they involve weighted analogues of important
basic tools used in the study of partial differential equations. !

In Section 2.1.0 the weights for several Sobolev inequalities are

characterized in a very general setting. Section 2.2.0 develops the theory ;
of weighted Sobolev spaces, weighted capacity, and weighted Sobolev ine

equalities in a setting appropriate for the application to differential ?
equations. An example is developed in which Sobolev inequalities are l
proven having weights of the form disﬁ’(x,K) for a class of sets K in- h
cluding unions of manifolds of co-dimension> 2. In section 2.3.0

a result on "reverse Holder" inequalities is develoved which implies
higher integrability for functions satisfying a maximal function

inequality.

e et et e e T O

2.1.0 VWeighted Sobolev Inequalities %

Conditions equivalent to two types of Soﬂolev inequalities
are developed involving the dominance of meisure by 'capacity".
It should be noted that V.G. Mazya [MA2] has proved 2.1.7 for
v = lebesgue measure and M = rd and D.R. Adams [Al-3] has done
the same for higher order inequalities (as well as two-weighted
inequalities for potentials). He has also §hown that 2.1.9, in
the special case described above, is needed only for K which are
balls. After having discussed my results oﬁ Sobolev inequalities
with me, Adams found an alternative proof for 2.1.7 and some
cases of 2.1.20 using strong type capacitary estimates, the
study of which was initiated by V.G. Mazya [MAl].

Let (M,F,w) and (M,G,v) be measure spaces with w,v positive.
Let W%’p(m,v,M) be a set of real-valued F measurable functions

satisfying the following properties. ?l
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2.1.1. wé’p(w.v,M) is closed under composition with f e N = {fe c*(R):
f(0) =0, f' 1is bounded and of one sign} .
There is a map |D| such that |D]: H(]J’p(m,v.M) + LP(v,M) and

' 1oreol® aV/P s ([ 19 (o21P 1001 &)/
(2.1.2)
<d (J [0f o 6{P av) /P

for some fixed d > 0 , where the notation |D¢| = |D[¢ 1is used.

~ The symbol |D| 1s only meant to suggest the absolute value of the
gradient on the classical wheP space. It should be noted that |D|
need not be sublinear. Special cases of wg’p(m,v,M) are developed in
Section 2.2.0. '

Given ¢ € H;’p(é.v.M) » let u¢ be the finite measure defined by

dug = Io¢|P dv . u; will be the distribution ?:asure of ¢ with respect
to u, , that is, wi(E) = (¢ (E)  so that | o(t) dup(t) =

J g(¢) du¢ for all Borel measurable g . Also let ﬁ; be the density

of the absolutely continuous part of u; . p' will always represent the

exponent conjugate to p , that is, % pl| = 1 . The proofs of the fol-

lowing theorems will be deferred till later.

2.1.3 Theorem, If 1 <psqQ<o and ¢ ¢ N(])’p(m.v.l‘l) » then
V4 1/p
(2.1.4) (I u® @) s c(J 10u|P dv

for some c>0 and all u=fo¢p , fe N, iff.

r 1/p'
(2.1.5) sup w/9(221) ” VD P i pca
r#0 r o ¢ |




t 3
The convention I gs=- j g fsused for t<s . If c 1is chosen as
S t .

small as possible, then alpscs dpl/q p']/p' b .

2.1.6 Remark. Under fairly general circumstances the co-area formula (F2] can

be used to give an explicite expression for ﬁ; . The following is a very
special case.
Suppose M = Q ¢ R" , Q open, |D¢] = |V¢) ,» v {is absolutely con-

tinuous with dedsity vV, an 1ritegrab1e Borel function and ¢ ¢ !:'I Q) .

L v 76| " = r L vai™ gt
- J{¢st}

for all positive Borel functions ¢ supported in £ so letting y =

[velP1Sx _; .+ 1t follows that () -L 1volP V5™ ae.
¢ (E) - R{¢st)

This can be generalized to allow M to be a "manifold" in a weak measure-
theoretic sense and ¢ to be "Sobolev”. .

1t H g W)'P(u.w.M) and H 1s closed under composition with fe N ,
then for AcM let G (A) = 'lnf{] 106]P dv: 6 e H , 421 on A}.

2.1.7 Theorem. If l1spsqQ< o , then
(2.1.8) (] lul? @)V9s ¢ (J [oul® ¢v)'/P

for some ¢>0 and all u e H
iff

(2.1.9) w/9(a) =b c},’g (A)

for some b > 0 , and for all setsA-i% }_1},45 e H, T ¢ 0,

e




3

If both ¢, b are chosen as small as possible, then d °b s ¢ s

d3 pllq p.l/p'b i

2.1.10 Remark. Although it seems in most cases that the use of the capacity
cH.p

sion KH p described in Section 1.3.0 is more easily calculated. This oc-

curs, for instance, when the level sets of the Sobolev functions considered

is more practical, there are specific cases when the equivalent expres-

are of a fixed geometry or if they display certain symmetries. It is neces-
sary in these cases to use the co-area formula, as described in 2.1.6, to
calculate ﬁ; .

Let (M,F,\) be a measure space with A positive, and let H"p(m,v,ﬂ)

be a set of real-valued F measurable functions satisfying the following.

2.1.11. H]’P(m,v,ﬂ) is closed under composition with f ¢ N' = {f ¢ C (R):

f' 1is bounded and of one sign} , and there is a map |D|: H]’p(m,v.M) -+
LP(v,M) such that (2.1.2) holds.

2.1.12 Theorem. If 1 spsq<® and ¢ ¢ H"p(m.v,M) » then
1/q 1/p
@113 ([ (] 160 -un)1 T @) s ¢ ([ 10ul” o)

for some c.|>0 and a1l u=fo¢ , f ¢ N' {ff

(2.1.14) sup wl/q(“r) (I: (ﬁ%%%t}l)]/(p']) dt)l/p' - b.' <.

r.y=t¢ .

If A(M) =1, w(M) <>, and ¢ ¢ L'(A.M) » then

(2.1.15) (J lu(x) - I uly) dA(y)| dm(x))”q <c, (I L d\,)""




Ve (2.1.14) holds.

The conventions 0+« =0 and, for kp/ﬁ; s %8 0, §= 0 are

1

for some c2>0 and a1l u=foe¢p , f e N

used. If the c, are chosen as small as possible, then d~
¢, s 2d p1/0 p.1/|:>' by
If Hc H]’p(m.v.M) and H 1is closed under composition with f ¢ N*' ,

b] sc2 <

then for Ac M Tlet

Eﬂ.p(A) = 'Inf{I |06|P dv: ¢ € H n L‘(A.M) .
¢21 on A and J¢dx-0} ,

and

T ) - mf{[ 106]P dv: ¢ € H n LIOM) ,
"~Q_so on A and Iq; dx =1} .

In Theorem 2.1.17 it will be assumed that
(2.1.16) if ¢ eH , then A({¢2t}) <= for t> 0.

If this is not the case, then the theorem still holds but CH.p and
C,; P must be replaced by the set function KH p defined in Section 1.3.0.
] . ’

2.1.17 Theorem. If 1 <psq<= and (2.1.16) holds, then
. 1/ 1/p
(2.1.18) (I (I Jutx) - u(y)] AN d(x)) A °1(J 10u] o)

for some ¢ >0 and a1l u e H
ire

(2.1.19) w'/9(a) s by T/P(A)

st e . Lol




for some b] >0 and all sets A= {¢<0}) , deH.
If A(M) =1, w(M) <o and H cL'(A,M) , then

@120 ([t - [ utn) el win) < e, ([ 1ou® @)””

for some c2>0 and all u ¢ H

iff
1/q 1/p
(2.1.21) w (A) < b2 cH,p (A)
for some b2 >0 and all sets A={¢s0} , deH,

Pz P
{1ff (2.1.19) holds since d cﬂ’p(A) s C;"p(A) sd Cu,p(A) .
If Cy » i=12, b, 1=1,2 are chosen as small as possible,

then d3b, sc, s2a3pYI p Py, 1202,

Remark: 2.1.10 is applicable to T(H p* C;‘ ,and T as well as

P H,p
Ke,p 2 Cyp -

Theorem 2.1.22 is an example of how the conditions in
Theorems 2.1.7 and 2.1.17 can be put into a more computable form when

p.]o T

2.1.22 Theorem. Let H = C';(n) , where @ c R" s open, and let v be
absolutely continuous with density v e Ll(n) .
If p=1, then condition (2.1.9) is equivalent to

(2.1.23) o/ YA) s ¢ Viminf %—L 3 dx
s Sk,

for some ¢ > 0 , all A compact with C" boundary and Cy = (x4A:
dist(x,A) < §} .




If v 1is continuous, then this reduces to

(2.1.24) w/A) < ¢ LA S,

or, in a more suggestive notation,
/95y
wy (A)'s ¢y, (3A)

If H= (2“(!2')|n » 2' open and & cQ', then for p =1 condition
(2.1.19) is equivalent to
(2.1.25) 0/9(a) A(a-R) s ¢ Viminf %L 3 dx
§+0 s
for some ¢ >0 and all A, closed relative to Q,which extend to com-
pact sets with C_ boundary in Q' .

If v 1is continuous, then this becomes
(2.1.26) w/9(A) A(R-1) < ¢ L st
AnQ :
The proof of Theorem 2.1.22 will rely on the following proposition.

2.1.27 Proposition. If ¢ ¢ cg(sz) s Q¢ R" 4sopen, te R is such
that {¢$=t} n {Vdp=0} =g , and if w {s continuous, then

wdx = I W dl'l"-] .

{¢=t}
where Cc(t) s {x ¢ {¢st}: dist(x , {¢=t}) < &} ..
% If ¢¢ Cg(n) and w s an integrable Borel measurable function, then

z
| Viminf %-L 0 dx s I w !
o O Kg(t) (9=t}

for almost all t ¢ R .
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Proof of Theorem 2.1.3. Assume (2.1.4) holds. Let w3(E) = w(¢™ (E) for
Ec R sothat forall feN and u=fog ,

(] Jul? dw)]/q =(j:° 1£(£)19 duf(t) 1/q

| -(I: ”: £ (s) dqu aw;(t))”q

t [
since f(0) = 0 and the convention I = -I is used. Also,
3 t

(] 10u® &) < (] 1#(0)1® 100l® &)

. d(fllf'(t)lp du;) e

Letting g = |f'] and recalling that f' does not change sign, it follows

(2.1.28)

r

(2.1.29) {

.

that

(2.i.30) (J: ”ot g(s) dslq dm;)]/q < cd(J: g’ (t) du;(t:))vp

for all bounded nonnegative C_ functions g .

u; is a finite measure since |D¢| e Ls . Also t9 is seen to be
m; integrable by letting g = 1 1in (2.1.30). Taking uniformly bounded
pointwise 1imits of bounded nonnegative C® functions g it follows that

(2.1.30) holds for all bounded nonnegative Borel measurable g . Taking
monotone 1imits then gives (2.1.30) for all nonnegative Borel measurable

functions g . Using (2.1.14) it follows that

e ., .




Mttt v 5 e b

coda

PR

e

[

r RYIA 1/p'
[ sup w;'/q([r.w))(i) ﬁ;(t) 1/(p-1) dt) s cd

O<r_
(2.1.31) ( and
0 . _1/(n 1/p'
gm0 ) s |

But m;([r,w)) = w({¢2r}) and m;((-w,r]) = w({¢sr}) , so considering the
t

s .
sign of r and using the convention J = - J » it follows that
s

t

sup w9 (%21) ”r ﬁ;(t)-]/(p'” dtl]/p' s cd .
r=0 0

Assume (2.1.5). As above, (2.1.5) is equivalent to (2.1.31) so, by
(1.2.15), (2.1.30) holds (with a different constant) for all nonnegative
Borel measurable g .. Given fe¢ N, let g = |f'| and use (2.1.28),
part of (2.1.29), and (2.1.2) to get (2.1.4). B

1

Proof of Theorem 2.1.7. By Theorem 2.1.3 it follows that d” ' b < c s

dpvq p’”p' b {if ¢ is the smallest constant in (2.1.8) and

r YT 174
b' = sup sup m‘lq(%zl) ” ﬁ;(t), V(p-1) dtl .
ée{ =0 0

Given ¢ ¢ f and re R , r £ 0, let f(t)a-:- so feN.

2 ~, b will be used to mean that ac']

c sbsac. u;%(E) =
Iof el &v wp Irl"’L 1061P o =
€rg

Mo o{{fod ¢ E}) =
fot ‘ LcrE

-p * =% -pI =%
irl Hy(rE) , so L uf°¢(t) dt Iri " u¢(s) ds .



Divide by |E| and differentiate using Lebesgue's theorem to get that
B (t) A Irl] P 1I"(rt) a.e. A change of variable now gives
fod dP

1/p'
1/q({121}) ”0 -*(t) ~1/(p-1) dtl

ng 6'/9(£(0) 21) (L T o) (8 -1/(p-1) dt)

so that

1/p'
b vy gup m‘/q(wan)(L a*(e) V(-1 dt)

since feN. Using the O0-= = 0 convention, it is clear that b' g

b* if b" 1is the smallest possible constant in the inequality
JMa “(p-1) )P |
(A) < b" inf{(L *(t) dt) : 621 on A and ¢t}

considered for all sets A = {y>1} where ¢ is a function

in H.  Using Theorem 1.3.2 it then follows that (2.1.8 and (2.1.9)

3
3 p1/q

are equivalent and d"°b scsd p'”p' b for b, ¢ chosgn as small

as possible. B8

Proof of Theorem 2.1.12. As in Theorem 2.1.3, (2.1.13) reduces to

(2.1.32) - (L: (J: ”: a(o) dcl dx;(s))q dm;(t))vq
s ¢d (J: aP(t) du;(t))]/p




with g = |f'| and J\; defined as x;(s) = A(¢"(E)) for E<R .

Also, as in the proof of Theorem 2.1.3, the function |t-s| has the

necessary integrability properties to allow the taking of 1imits, thus
giving (2.1.32) for all nonnegative Borel measurable g . Using (1.2.23)

and arguing as in Theorem 2.1.3 it is seen that (2.1.13) 1s equivalent
to

P 1/(p-1)  \W/p'
sup w'/9({esr}) (J: (A .{.f:} ) dt) <w
r

combined with

sgp w‘/Q(wzr}) (L: (X—p%?% )ll(p-l) dt)vp‘ <o,

It is easy to see that this is just (2.1.14).
If A(M) =1, wM) <= and ¢ e L'(A,M) , then (2.1.15) reduces to

(2.1.33) (j: |£(Lt ¢ & dA;(s)lq dw;(t))vq

s ¢ d ([: gP(t) du;(t))]/p

The finiteness of A , w implies that of A; and w; so that taking
limits of C functions of compact support it is seen that (2.1.33) holds
for all bounded Borel measurable g of compact support. Using (1.2.24)

and continuing as above, the equivalence of (2.1.14), (2.1.15) is proven. B




i

Proof of Theorem 2.1.17. By Theorem 2.1.12, it follows that d” b s ¢ s

2d p”q p"/p.b if < is the smallest constant in (2.1.18) and

rf.p Vip-1)  \-U/p!
b = sup sup w9 (%srl)(} (A—_(iﬁt—})') dt)
deH - r 0 u;(t)

since f e N' if f(t) = -t .

Given ¢ e H, re R , let f(t) =t-r so fe N and u;(E+r)=

u¢({¢ eE+r}) = u¢({¢-r €E}) ~

P u;_r(E) , and therefore, by differentiation,

ﬁ;(ti-r) mdp ﬁ;_r(t) = ﬁ;(tb)(t) a.e. .

*

s is Lebesgue integrable.) A change

(Recall u; is a finite measure so ¥

of variables now gives

1/(p-1) 1/p'
o/ q(¢sr)(r< AP({¢2t}) ) dt)
r

ip(0)
) (p-1)" \1/p'
. muq({fmso})(r (uf_ﬂmn) dt)
0\ HE(e)(t)
0 1/(p-1)  \1/p'
and so sup m‘/q({q’so})([("—@ﬁl}l) dt w b
deH u*(t)

Using the Q+= = Q0 convention, it is clear that b ~d b* if b’

{s the smallest constant possible in the inequality

1/(p-1) \-1/p'
/%) < b 1nf{j.("p_{¢2t} ) dt) : 950 on A, de H}
0\ H*(t)

considered for all sets A = {y<0} where pis a function in

H. Noting (2.1.16) and using Theorem 1.3.5, it now follows that

T L e o A5 g o



—

(2.1.18) and (2.1.19) are equivalent and d'3 by s ¢ s 2¢° p'l/q p‘]/p' by
if b] and ¢, are chosen as small as possible.ﬁ The equivalence of

(2.1.20) and (2.1.21) follows in a virtually identical manner. g

Proof of Proposition 2.1.27. If {¢=t} n {|V$| =0} =g , then || 2 6>

0 on {p=t} for some &6>0 since ¢ has compact support, so M, =
{¢ =t} 1is an oriented compact n-1 dimensional manifold. If fs(x) =
x+n s , where Ny is the unit normal to {¢ =t} at x directed into
{¢st} , then 3d>0 such that if Osssd, then f_: M, +F (M) fis
a diffeomorphism and lel +1 as s+0,where J  1is the Jacobian
of the transformation.

If §<d and ¢ is continuous, then

l%- Lc(t) v dH" - I{q;-t} ¥ dun-ll |

1 n-l n-1
+ v(x) ai™! ds - v dH
6 E Ifs(wﬂ:}) J{¢-t}

"from the co-area formula and the
fact that the gradient of the
distance function has absolute
value one a.e. on C(§)

§
1 - n-1
sl L [{¢-t}|"’(fs(“” 9] - u(x)| @) s

n-1

dH if csae for some se since

[Jg| +1 and y f{s continuous.

¢ I{¢-t}

e epoers e -
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Therefore the first statement of the proposition is proven with ¢ = w .

If ¢¢co“(n) and B

{t: (o=t} n {|V$| =0} # @} , then the Morse-
Sard theorem says that |B|

0. B 1is closed since ¢ has compact sup-
port so R-B =) Ii ’ Ii being pairwise disjoint open intervals.
i
=S Ii

Given [to.t]] , then |v¢] 26 >0 on ¢'1([t0.t]]) . If fs is

defined essentially the same as before, then f_: ¢'](t0,t1) -+ fs(¢-](t0,t]))

is a dfffeomorphism for all sufficiently small s , say s s d for some
d.

If ¢ 1is an integrable Borel function, then

4 4
I -;-J R’ " gt - J J v a™! dtl
ty  G(t) tg =t

et
1,

¥(x) a7 ds dt + J v|vé]| du"

H
ty o(fg (xD=t
< g-f: I wlwofs"l di" ds + lewl aH"

< CI@dH"

with C 1independent of tyr % if to .t:1 e [a,b] Ii for fixed a,b .

Given € > 0, pick ® continuous such that | |lw-@| <& and pick

§>0, &= 68 as in the first part of the proof. Then,

ey e



t t

1 1 ( _

l ;-I 0 di" dt - ® dﬂ"‘dtl
c

tg cy(t) tg o=t}
t t
1 1 ( )
s ‘j H BdH“dt-I adn“'dt‘
tg Cs(t) t; o=t}
t
1 Y
+ l] %—l (@ - o) di"dt - { ! (@ -w)ai"™ ! dt
ty Cs“‘) ty o=t}

(Y
s eq [ ! dt+c)

ey Jget)
< e(] lvs| +¢) ,

4 t, t,
$0 [ Yiminf g-l © di" < 1im %—I I o dH dt
t &0 " e (¢) 80 " ey eyt
t
1
- f i o di" dt .
t, o=t}

Now divide by t]-to and let 1:.l + to to get the final result. B

Proof of Theorem 2.1.22. Assume (2.1.23), that is,

u‘lq(K) < ¢ liminf }—I v dx
§+0 CG

for all K compact with C~ boundary.
Jake 3 to be a representative of the L' equivalence class which

is Bore) measurable and everywhere defined. Let A={y>1} for




some V¥ e c';(n) . Given ¢ € CZ(Q) such that ¢ 21 on A, it fellows

by the Morse-Sard theorem that {¢ =t} n {|V¢| =0} =@ for almost all
t e R for which it then follows that {¢ =t} is compact with C

boundary, so
m”q(A) < w”q({qbzl}) s w”q({&:zt}) for Oststi

sc h’minf%— v dx a.e.,

§+0 ICG(t)

where Cs(t) = {x e {¢ st}: dist(x,{¢=t}) <6} , by taking K

{¢ =t} for
those t in (0,1) where {¢=t} n {|{V¢]=0}=¢g .
It now follows that

as]/q(A) s inf liminf + v dx

(0,1)  6+0 GICG(t)

< inf J

(0,1) {¢=t}
= inf "
(0,1) ¢

v dx by Proposition 2.1.27

considering the remark given after Theorem 2.1.3. Using Theorem 1.3.2 now
shows that (2.1.9) holds for p=1.
Assume (2.1.9) so that

(2.1.34) ' (I ¢9 dm)vq sc I |Y¢| v dx

for all ¢ ¢ CB(Q) . Given A compact with ¢” boundary, 3 e* >0 such

that ¥(x) = dist(x,A) is C for x e {0<dist(x,A) <’} with
[P(x)] =1 . Let




1 on A,
£ = {-UX) g y<s, xga,
0 otherwise,
and Tet o  =h +f. ,where h(x) =2nh(2n), heC(R) , h20,
I h =1, and the support of h =spt hc [-1,1]. If o ¢ C‘;(Q) with
o 21 ona neighborhood of A, n 1is large and § small, then o
dominates the %ns ° (2.1.34) then implies that o ¢ L‘(m,ﬂ) since

G_ € L‘| (Q) , so the dominated convergence theorem can be used on (2.1.34)

q 1/q 1 -
to show that ([ \"6 dm) scy L v dx . Taking the liminf gives
: §+0
. 8 .

(2.1.23).
To prove (2.1.25) equivalent to (2.1.19), first extend v, w , A

to be zero in R'-Q and do all further work in Q' . Assume (2.1.25) so

that
(2.1.35) u‘,q(A) A(Q'-A) s ¢ liminf %L v dx
§+0 8

for all AcqQ' , A compact with C  boundary.

Let K . {x €Q: Y(x) <0} for some VY ¢ C“(n')l . Given ¢ ¢ C‘;(n')
1) Q

such that ¢ #0 on K, let $y=o ¢y » where L2 is an extension of

¢ to Q' and 0 ¢ C;(n') » 6=1 on Q. By the Morse-Sard theorem
{6, =t} n {lv¢]| =0} = g for almost all t , and so {¢; st} fs a compact
set with C boundary for almost all t , but then

m'/q(l() < w""‘({q’] <s0}) < m]/q((bl st) for O<st<e




1iminf %- J v dx
é+0 Ca(t)

s X((5; >t a.e. by (2.1635)«" where the
convention 5 =2 == is
used for this ratio,

vainr L[5 o
§+0 Ca(t)
= A({¢1 th}y a.€.,

since A({ds] 2t}) , being monotone, has at most a countable number of dis-
continuities and therefore k({¢] =t}) =0 a.e.

It now follows that

liminf .;- [ 3 dx
Va Lo 80 Sl
@ 7(K) s (0':0) X({‘h 2t})

I 5 T
t9y°t)

(0m) MGzt

by Proposition 2.1.27

Wi (t)

Ry

since v and A are zero in Q'-Q and ¢]‘n = ¢ . Using Theorem 1.3.5
it can be seen that (2.1.19) is verified.
Assume (2.1.19), so for ¢ e c"(n')ln it follows that

@138 ([([ 1otx1-9t0f aats))? m(y;)”q sc[lo] % ax.

1 O P 01




Given A c Q' with ¢ boundary, let ¥n.s be as before, recalling

that the diameter of spth =1 . Let F = {xed’: dist(x,2A) s 6 +1}.
= A~ .—1— l

Then ¢, ;=0 on 2 A-F,  and s 2 1--5 on A for o s& since

f’6 21- -“% on {xeQ': dist(x,3A) < 1/n} , and so §, * \“‘s 2

(1 --.%) [ hy = 1- n—}- . From (2.1.36) it follows that

W'/R) ARt -A-F (1 - )

n
: c[ |98, g1 ¥ dx .

Let n+= to get

u"q(A)_ A(Q' -A) s ¢ %I vdx , -
Cs
and taking the H;n:é\f gives (2.1.25), as required.

In case v 1s continuous (2.1.24) and (2.1.26) can be shown equivalent
to (2.1.9) and (2.1.19), respectively, by going through the proof above,

using the first part of Proposition 2.1.27 and replacing liminf by lim .
§+0 &0

Alternately, (2.1.24) and (2.1.26) may be shown equivalent by using directly

the methods of Proposition 1. 8

el o,




2.2.0 Properties of Sobolev Spaces and Capacities for Application Lo

Differential Equations
The Sobolev spaces and'capacities'dealt with in Sections 1.3.0 and

2.1.0 will now be placed in a setting appropriate for the applications to
differential equations developed in Chapter 3.

Basic properties of the capacity CH,P and its extremals are developed
such as subadditivity and capacitability. It is shown that Sobolev spaces
are closed under operations such as composition with certain Lipshitz
functions. The weight conditions for Sobolev inequalities developed in
Section 2.1.0 are translated into the setting of Euclidean space and an

example is given, where it is shown that weighté of the form dist®(x,K) are

admissible, for a class of sets K including unions of C2 compact manifolds

of codimension > 2. The notion of quasicontinuity is developed and ap-

plied to prove a weighted analogue of a result of Bagby [BG] which char-

acterizes w(‘)"’(n) . This in turn is used to demonstrate the equivalence

of two approaches to the definition of weak boundary values for the Dirichlet

problem. Many of these results are true in a more general setting.
Throughout Section 2.2.0 Q will be an open subset of le » p21,

-and @, v, and A will be locally finite positive Borel measures on

Q with'v absolutely continuous to w and A(Q) =1 .

d
2.2.1. Sobolev Spaces. Let LP(E) = LP(w,E) x hd LP(v,E) for Eca,

E Borel measurable. Assign LP(E) the norm |(f.91. '"’gd)lp;E’

(IE 1£1P do + Ki" L |9|(|p dv)1/p .

A omats s




1

-

tet L5 (a) = {(f.gs.. SENLRULISRER I P(x) for all

Keq, K compact} . loc(n) is given the topology induced by the
seminorms | lp'K » KcqQ compact. w1'p(m,v,n) is now defined as the
9

closure of H = {(¢,74): ¢ C () aLlP(w,2) and V4 € Kﬁl LPv,a)} in

@) ; Ho’p(m.v,n) as the closure of H n C3(a) x n G in tP)
K=1
1,p
and “10 () as the closure of H in L]oc(n)
Given (u,v) ¢ wiéc(m,v.ﬂ) , the notation v'=%u , Ue "lop(“’“’n)

and I("‘v)lp;n = Iul]'p
misleading. It is not claimed that u has a unique gradient. In fact

will be used for convenience even though this is

Serapioni has observed that for some weighted Sobolev spaces, zero may

have a nontrivial gradient in the sense above as well as a zero gradient.
Under fairly weak conditions it can be shown that if (u;.v), (upsv) e
H"p(m.v.n) , then U =y, almost everywhere. If w(E) = 0 on sets E
of capacity zero, then this will follow from Propositién 7. For convenience
H"p(n) w11] be used to denote Hl’p(m,v.n) .

One of the basic operations needed in the theory of Sovolev functions
is composition with Lipschitz functions. The following proposition shows
that ;his is possible for a wide class of Lipschitz functions. For example,
any Lipschitz function with at most a countable number of discontinuities
in 1ts derivative is acceptable. The other basic operations considered
are needed in Chapter 3 to show that certain functions are allowable as
test functions in the definition of weak solution.

Unless a particular space is specified, all the Sobolev functions
in Proposition 2.2.2 will be assumed to lie in one fixed Sobolev space,
the three possible cases being qup(a) . w"p(n) , and H;'p(n) . Con-

vergence is always that appropriate to the particular space considered




unless otherwise indicated. It will be assumed throughout that (u,7u) ,
("n .Vun) s (VaWV) , (vn ,an) " are Sobolev functions and that f(0) =
fn(o) =0 if H;’p(ﬂ) is being considered or if w{(Q) == and w"p(n)
is being considered.

2.2.2 Proposition. Assuming the above it follows that:

(2.2.3) If fe C'(R) with f' bounded, and if u_ € C°(a)
with ("n ,vun) + (u ,yu) , then

(f(u“m) ’f"("nm) Vunm) +> (f{u) , f'(u) vu)

for some subsequence {nm} .

(2.2.4) Suppose f:R + R is uniformly Lipschitz and 3f, e C](IR) such
that f," converges everywhere in a uniformly bounded pointwise manner to a
Borel measurabie function g, g = f' a.e., and fn(O) + f(0) .
If ("n .Vun) + (u,Vu) , then there is a sequence n, such that
(f,,,(unm) .f,;,(unm) vunm) + (f(u) , g(u) Vu)
and if u, *u pointwise everywhere on a2 set E , then fm(unm) + f(u)

m
pointwise on E as well.

(2.2.5) Let

1 xekE } b x20

0 otherwise 0 xs0

i pr > e o et e i

i e e vy

e S T



1 x>0 b x2b
signx-{o x=0 , h, . (x) -{x asxsb ,
a,b
-1 x<0 a Xxsa

where it is assumed that a<0Osb in the u;’p(ﬂ) case or in the W' P(q)

case i1f w(R) == ., The cases a =-® and b =« are included.

For each of the pairs (x' ’x{x>0}) » (x|, sign x) ,

(ha.b(x) "x{a<'x<b}) » represented as (f,g) , there is a sequence (fn} c

C*(R) such that f , '{fn} » § satisfy the requirements of 2.2.4.

Therefore 1t follows that (u', Xtu»0) T4) (lul » sign u Yu) , and

(ha,b(") . x{a <u<b} Vu) are Sobolev functions.

The fn may be chosen to converge uniformly. For f(x) = xt or

[x] » the fn may be chosen such that 0 g fn(x) s f(x) and for f(x) =

h‘.b(x) , the fn may be chosen such that a s fn sb . If in addition

a<0<b, then a<fn<b ts possible.

2.2.6) If f:R >R, feC[a,b] and a<u<b, then (f(u),f (u) vu)

is Sobolev.

2.2.7) If u and v are bounded, then (uv,v Vu + u Wv) is Sobolev.

2.2.8) If u, v are bounded, u H(])'p(n) and v ¢ N"p(n) » then

w e ¥g'Pla) .

(2.2.9) If u ¢ CB(Q) » Ve N};';(n) » and efther v 1is bounded or v < c» ,

then uv ¢ H;’p(n) .




Proof of Proposition 2.2.2.

Throughout the proof ft will be assumed that E =2 if Wy*P(q)
or "1.p(9) are being considered and E 1{s an arbitrary compact subset

of Q@ if u};‘c’(n) is being considered.

Proof of 2.2.3. Since |f'(x)] s M for some M <= , then f(x) s

Mix] + f(o) , so f(u) ¢ LP(w.9) or Lgoc(m.n) depending on the case

being considered. Also on some subsequence n

m * Yn + u pointwise

m
almost everywhere with respect to w (and also v since v is absolutely

continuous to « ), so

IE ['f'(unm) Vunm « f'(u) VuIp dv < L lf"(u"m)lp |‘7u“m-‘7u|p dv

+ L £ Cup ) - £ (IP [0l o

since If'(uﬂ )| sM and [f'(u )-f'(u)] + 0 pointwise almost every-

m m
where v in a uniformly tounded manner. Also

L Iflay ) = F(WIP du 5 P L i -ulP w0 @

Proof of 2.2.4. By 2.2.3, (fm("n) .f.;i(un) Vun) is Sobolev, also u“1 - U

pointwise almost everywhere » , v on some subsequence n; so
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IE lg(u) Yu - f“"(uni) Vu“ilp dv

3 [E |g(u) -f';(u)l IVu.lp dv + fE [f,;'(u) w - f’;‘(uni) Vunilp d ,

and therefore

1im Vimsup I lg(u) Qu - f'(u_ ) Vu |p dv=0,

me {20 JE mongt N
the second term converging to zero as in 2.2.3, and the first converging
to zero since f';‘ + g everywhere in a pointwise uniformly bounded manner.

A subsequence {ﬁm} can now be chosen so that f';‘(u'-‘ ) Tu- g(u) u in
m m

d
1 LPv,) .
k=1

For x20,

t
[tal) - #0015 |

< Mlx| + |f (o) - f(o)]|

f2(s) -g(s)| ds + | (o).~ f(o)]

for some M <= and also fm(x) + f(x) since f';‘ + g pointwise in a
unfformly bounded manner and fn(o) + f(o) . The same is true for x < 0
Mso |fi] s M for some M <= and 211 m, so

L |fm(u'-|m) -fm(u)lp do s W I lu;-"'-u|p do + 0 .
Combining these shows that

[ 1talt) - f0)1P o s L tal0) - (1P o+ 11000 - ) 1P @0

+0,

so the dominated convergence' theorem implies that I |fm(u) - f(u)lp du+ 0 .
E

S e

e



and so fm("ﬁ ) + f(u) 1in Sobolev norm.

1f u, * U pointwise everywhere on a set F , then- E
m )

[ty ) - flu] < [£,(u) - Flu)] + LA RAT]

s |fm(u) -f(u)] + Mlunm-ul ﬁ

+0

on F as well. B

Proof of 2.2.5. Pick n ¢ C‘B(IR) such that the support of n < [0,1],
nz20, and f n=1. Let nn(x) = nninx) , f(x) = x s and fn(x) =

n, * f(x) so that

() £ (x) 0 x<s0
f'ix) =n_» f'(x) =
n ] n 1 xZ%

with 0 s fr" £ 1. It is now clear that

(2.2.10) f;‘ +X everywhere in a pointwise unifoﬁn]y bounded manner.

{x>0}
Also fn(o) = f{(0) =0 and 0 s fn(x) s x' since
1
0sny s f00 = x" - [ ) G- G-Dt) @y st
0

The fact that the fn converge uniformly follows from (2.2.10), fn(O) =
fm(O) , and f"‘ = f|;| in R-[0,1].
For f(x) = |x| use that |x| = x* + (-x)" in combination with the

smoothing of x+ done above to define fn so that f,"(x) + sign x
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everywhere and the conditions of b) are met.
For f(x) = ha b(x) pick n e C;(IR) with n20, fn =1, and
the support of n c [-1,1] . Let n, *n n(nx) and gn(x) =n, * xE with

.~‘- n
En'-{a_+%<x’<b--:-}-so
0 if xsa+-},— or xzb-%
(2.2.11) Osgnsl s gn(X) ‘{
3 3
1. if a+;'-$!$b-;,‘

for large n and gn(x) -+ 'x{a<x<b} éverywhere in a pointwise uniformly
bounded manner.

Let
| X
(2.2.12) £.(x) = £(0) + fo g (s) ds ,

0
(where the convention r = -I
0 x

for x<0 1is used)so that f“(o) = f(0)
and f"‘ g, -X{a <x<b} everywhere in a pointwise uniformly bounded manner.
Uniform convergence of the 1"ﬂ follows as for x+ . If a<0<b, then
it 1s seen from (2.2.11) and (2.2.12) that a < fn <b for large n .

Otherwise it follows similarly that a < fn <sb. 1o

Proof of 2.2.6. With f_ as above, apply 2.2.4 to f(f ), f(h ) , and
g= f'(ha.b)x{a<'x<b} . Since a <u<b , this implies 2.2.6. ®

Proof of 2.2.7. Assume |u] , |v]<M<® and apply 2.2.5 with ha,b .
a=-M, b=y in combination with 2.2.4 to see that 3 {un} s {vn} €
C(R) such that (up »Vup) + (u,9u) and (v, ,9v ) + (v,ov) with |fu ] ,
Ivnl < M . In addition, choose the sequences so that they converge point-

wise almost everywhere w, v . Consequently,
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i p P iy |P P iyoy (P
L juv unvnl dmsL ul® |v vnl dm+IE Ivnl lu unl &

s MP(L Iv-vnlp do + IE |u-unlp dm)

-50,‘

and

(!E |(uKVV+ viu) - (u ov + VnVUn)lp dv)]/p
] (IE |uvv- uannlp d\.))"/p + (IE |vvu- vann|p dv)]/p
s (L lu-u [P fov}P dv)“p " n(f vv- v [P av)w

-|»(IE iv-vnlp |vulP d\:)vp + M(I |Vu - unlp d\)).llp

since Va* ¥ and u, > u almost everywhere in a pointwise uniformly

bounded manner. B

u, v are bounded. In the proof of 2.2.7 choose E = Q and up, € C';(n)

so that uv ¢ "(l).p(n) since UV € Co(n) .

If instead u ¢ c‘;(n) s Vo€ H};z(n) ,and v 1is bounded, then

choose E = support u and choose u_ * U, SO again uv ¢ w&’p(n)' . In

the last case when u ¢ CB(Q) » Ve u};g(n) and v s ca , the only change

is that v < co fs used to show that L lv-vnlp IVulp dv - 0 . This is
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clear since |Vu] {s bounded on E = support u and v_~+ v in

n
WP(o,E) . ®

2:2.13 Capacity. C, 5 . CH,P » and CQ,P will be redefined and ¢, o
will be shown to be subadditive and capacitable. The concepts of quasi-
continuity and capacitary extrenal will be developed. The proof of the
fact that the capacitary extrema) satisfies a degenerate elliptic partial
differential equation will be left to later, when it is used to prove a
particular Sobolev inequality.

If H , as described in 2.1.7, is C;(n) » then all level sets are
compact and the conditions, equivalent to the Sobolev inequalities dealt
with in 2.1.7, only involve capacities of compact sets. This motivates

an alternate and more classical definition of capacity for noncompact sets.

Let H be a subset of C (2) (the functions typically vanishing on
some set or a nbd of some set) closed under addition, and composition

with f ¢ {feC: f' bounded, f(0) =0} . Let
. CA(K) - 1nf{f Iv¢|p dv: deH , 621 on K}
for K ¢ Q compact,
C,‘,(O) = sup{C'(K): KecO , K compact}
for 0 < open,

C,(E) = inf{C'(0): 0 open E c 0 cq}

for arbitrary Ec Q.

WA




2.2.14 Proposition. C, 1s monotone increasing and for E either compact

or open
,C,"(E) = C,(E) .

Proof. If E is openand Ec 0, O open, then forany Kc &, K is_
also in 0 so C'(0) 2C'(E) , and so C(E) 2 C*'(E) , but C'(E) 2 C(E)
since E is open, so C'(E) = C(E) as required.

If E is compact and if Ec 0 , O open, then c;‘(O) 2 C*'{(E) , and
taking the infimum over such open sets gives CH(E) 2 C,;(E) . If ¢ eH
and ¢ 21 on E, then ¢ > 1-c on anopen set 0 with Ec 0, so

that

CH(E) < C;{({cb >1-€})
= sup{cf'{(K): Ke{p>1-€}, K compact}

1
(m)PI Iv6] o

s

since T%? 21 onall Kc{¢>1-€} . Now let € - 0 and take the in-
fimum over all such ¢ to get CH(E) < c*"(E) .

2.2.15 Proposition. If A, B <Q, then

(2.2.16) Cy(AuB) +Cy (AnB) < C,(A) +C,(B)

and Cy 1is capacitable, that is, if E is Suslin (this includes the Borel
sets), then 3K, compact such that K cE and CH(Kn) - CH(E) as now

Proof. Once (2.2.16) is proven, then capacitability follows from a theorem

of Choquet fC]. Assume A and B are compact. If CH(A) =@ Or




C (B) == , then (2.2.16) holds. Otherwise let SMaxn(x.y) = fn(y-x) +x
and S Minn(x.y) 2y - fn(y-x) » Where fn(x) is the smoothing of xt as

+ . +
in Proposition 2.2.2, so fn(x) x o, fo x{x>0} s and x -€, S fn(x) <
x* for some €, +0. Pick ¢, peH with ¢21 on A, p21 on
B, I |V¢|° dv <= and I [Pw|P dv <= . Let Oyn " SMaxn(¢.w) R

+

Gz.n = sninn(¢:W) » SO 0] n ad (¢'¢) +¢ = Max(¢.xp) ’ 02.“ -9 - (¢'°¢)+ =

g
Min(¢.¥) , and 1%;_? 21 on AuB, g, =1 on AnB.

From Proposition 2.2.14 and the definition of C,_" it now follows that

CH(AUB) + CH(AnB)
n

1 [ 1t toma) (Pecte) 5707 .
n-en)PI |£000-0) (-70) +901° v + [ |70~ £3.6-6) (70-90)]° &0

*[lﬁwﬂwwwrwﬂ°w+[lw-qw“Wwwnpm

P [P e

lwl® v + j{m} |v81P dv + [{ e

IWW}

v>¢

[ 1ol dv'+[ vs[P ¢v .

Taking the infimum over such ¢, ¢ 1t follows that
] ]
¢, (AB) +CH(AnB) 3 CH(A) +C H(a)

and so (2.2.16) follows for A, B compact by Proposition 2.2.14.
If {Kn} are compact and 0 1s open, then (K n} is said to ap-
proximate 0 if K g interfor Kney 2nd UK = 0. Assume A, B are
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open and pick {An} R {Bn} » compact sets which approximate A, B ,
respectively. It is seen that (An U Bn} and {A" n Bn} approximate
AuB and AnB , respectively. Given KcAuB and CcAnB, K and

C compact, tren Kc A u Bn » and chn n Bn for some n , so
C, (K} +C,(C) < cH(An“Bn) +CH(An“Bn)
23 CH(An) +CH(Bn)
s Cy(R) + ¢,(8) .

Taking the supremum over all such K and C , and using Proposition 2.2.14,
it follows that (2.2.16) holds for open sets.
Assume A, B are arbitrary sets in Q . Given open sets 0, PcQ

with Ac0 and B c P, then
CH(AuB) + CH(AnB) < CH(OuP) + CH(OnP)‘
S C“(O) + C“(P)

and taking the infimum over such 0, P shows that (2.2.16) holds. B

2.2.17 Proposition. Cy is countably subadditive.

Proof. Given E;c®, t=1,...,n, it follows from Proposition 2.2.16

n n
E C,(E;) .
that CH(1L'J] 1) s izl H( 1)

[
Let {01}:_] be open sets and K a compact set with K< U 0, so
. i=1

m m od
Culk) sC {U 0,) s c.(0;) s c,(0,)
WK s QLU 05) s 3 (0)) s T Gyl




for some m, so taking the supremum over all such K it follows that

CH(,UO)s X CH(O) Fina‘l'lyfor Eicn, i=1,2,..,Iif
CH(E ) = w for some i , then cH(u E;) s )j Cy(E;) . 1Othermse pick
0,l open such that Ej s 01 cQ and CH(O ) s CH(Ei) +e2
C(UE)sC(UO)s €,(0,) se+ ¥ C,(E,)
Higgy 1= HY o) §Hi §u1
and letting € + 0 gives the result. #

Propositions 2.2.18 and 2.2.19 will be used to motivate the definition

of quasicontinuity.

2.2.18 Proposition. If ¢ ¢ H , then
¢ (Clo] >21) s—j %P av
1

for all A >0.

Remark. Using a smoothing of the absolute value function the coefficient

2 may be replaced by 1 .

Proof. If K c {¢>A} and K {s compact, then %21 on K, so
-CH(K) < ATI IV¢|p » therefore taking the supremum over all such K
gives C ({¢>2}) < ;‘-J |v6|P dv . Considering that {]¢] >2) =

{#>A} v {-¢>A} and using the subadditivity of Cy » it is seen that

Proposition 2.2.18 holds. @

2.2.19 Proposition. If bpeH, n= 1,2,... , and the ¢, 3re
Cauchy in H] 'p(n) » then a subsequence of the ¢, converges uniformly off




open sets of arbitrarily small CH capacity.
et 1,p

If H = CO(Q) R {¢n} are Cauchy in W, (Q) and either I¢n| <

n=] loc
M<® or v s cw , then there is a subsequence {"i} and there are open

sets of arbitrarily small CH capacity off of which the ¢n converges
i

uniformly on compact sets. In any of these cases a subsequence of the

¢n converges pointwise off a set of CH capacity zero.
- P
Proof. Choose n, iteratively so that n; < L and n¢ni ¢"j]’p <

2'(1+2)(p+]) for all m2n, . Let E = {l¢. -¢ | > 2°(i+2)}
"y +]

n
so that by Proposition 2.2.18 it follows that CH(Ei) < 2'(i+]) and so
CH(U Ei)szm forall m>0. If xe- U E;, then

iam -1 iam

¢ (x)-¢_ (x)]s= o (x)-¢ (x)] <2™ for i>m and so the
l"m " | kzm | "k e+ |

¢n1 converge uniformly off the open set JJ Ei which has capacity 2"
2m
If H= C;(n) and {¢n :,] is Cauchy in w}sg(n) » then pick K, c

compact such that K; ¢ interior K., and U Ki =@ and choose n, e
C;(interior Ki+1) so that ng = 1 on Ki . Also choose a subsequence

n1 s0 that the ¢n converge « almost everywhere (and so v almost
|

everywhere since v 1is assumed absolutely continuous with respect to o )

so that

P p
n,¢ -n, ¢ do < € I . -9 do + 0

i

as j,k+w , and
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(W) (e, -¢ WP av + ¢ v, - |P dv
« |1 .l Lm 900, <y

e e o =Tty e

is

as j.k+= if |¢n|sM or if v s cw . Therefore {“i¢ }J-]
' i

Cauchy in H1‘p(n) and so by the first part of Proposition 2.2.19 sub-
sequences n, . can be chosen iteratively so that (n j} is a subsequence

of "{n,_; s}, and {n; ¢ n, }3-1 converges uni formly on K;=G; » where G,

-(141) . Let Fk- U G1 so CH(Fk) s 2 -k

s an open set with CH(Gi) <2
i2k

and the diagonalized sequence ¢“jj converges uniformly on any compact sub-
set K of @ -F, since K must lie in K, for some 1. B

2.2.20 Definition. If a property holds everywhere except possibly on a set H
of C" capacity zero, where H -c‘;(n) , then it is said to hold quasievery-

where. If u ¢ H;'p(n) and there exists a sequence ¢y € C';(n) such that

°n +u in u}"’(n) and ¢ + u pointwise quasieverywhere, then it is said that
u fs quasficontinuous. If u ¢ Nu;p(n) and there exist ¢, ¢ c(q) such

that ¢, +u in Hu;p(n) , then it is said that u is locally quasicon-

tinuous.
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2.2.21 Proposition

(2.2.22)

(2.2.23)

(2.2.24)

If ue NA’p(ﬂ) » then u can be redefined w almost everywhere

so as to be quasicontinuous.

If u 1is quasicontinuous, then u 1s continuous off open sets
of arbitrarily small CH capacity for H = d;(n) and if

. 1 .
oy € 63(9) and ¢ +u in No’p(ﬂ) » then ¢“i + u pointwise

quasieverywhere for some subsequence {n;} .

If either u 1is bounded or v s cw , then (2.2.22) and (2.2.23)

hold for u ¢ N};g(n) and ¢n e C(R) if quasicontinuity is

replaced by local quasicontinuity.

Remark. The conditions u bounded and v < cw 4in Propositions 2.2.19

and 2.2.21 are actually needed only near the boundary of & .

Proof. Given u ¢ ug’p(n) » there exist ¢ e 63(9) such that Yy, * U

in ";,p(n) . Using Proposition 2.2.19 a subsequence {"1} may be chosen

such that wn converges pointwise quasieverywhere as well as « almost
i

everywhere so u can be redefined on a set of «» measure zero to equal

1im ¢_ (x) , where it exists, and so is quasicontinuous.
~

If u 1s quasicontinuous, then there exist ¥y € d;(n) such that

Yy * U in H;’p(n) and pointwise off a set E , where CH(E) =0,
He= d;(n) . By Proposition 2.2.19, there exists a subsequence {“i} such

that *"1

CJ"O.

converge uniformly off open sets GJ with C“(GJ) <Eg s
Choose OJ open such that E ¢ Oj <Q; and C"(OJ) <eg so




¢n + u uniformly off GJ v Oj and CH(Gj qu) < ZEJ . Therefore u is
continuous off open sets of arbitrarily small CH capacity.
1f 9, € d;(n) and oy * Y in w;'p(n) » then by =¥p * 0 in
w;'p(n) and by Proposition 2.2.19 O Yy * 0 quasieverywhere for some
i i

subsequence '{ni} . Y, u quasieverywhere so it is now clear that
i

¢y, T U quasieverywhere.
1 .

The proofs above go over to the H};ﬁ(n) case with minor changes as

in the proof of 2.2.19. B

It 1s useful to know that there exist extremal functions where the
infimum in the definition of Ch is achfeved. To accomplish this a vector-

valued form of the Clarkson inequalities is needed.

2.2.25 Lemma. Suppose (M,F,v) 1{s a measure space and H a real
Hilbert space withnorm | | . If f, g are H-valued functions on M
with |fl', lal » If+9l . |f-9] . F measurable, then

(2.2.26) Il%glpdv+fif?lpdvs%[|f|pdv+%!|g|pdv

for 2spce, and

(2.2.27) (I I%gl" d\,j’("“) . (I I%_le d\))1/(p-1)

$ (% I 1£1P dv + %J laf? dv)mp-])

for 1<ps2.




Proof. Given u, ve H, let L be their span. Since the scalar field

fs IR , there is a linear map ¢ :L »~ € such that [x| =[e(x)| for
Xel . Using 15.4 and 15.7 in [HS] it follows that

. P -olv) |P
|9.(ng9.(&).| +|9;(y_)_i.9;(1l| <3 1otu(P + 3 lew)(®
" for Zsp<°°',and

jelud selu) lp/(p']) + [elulev) lp/(p'” s (3 lo)P + 3 fo(n)IP /oD

for 1 <ps2.
Using linearity of ¢ and Ix|] = [#(x)] and letting u=f, v=g

leads to
8P 2P <10
or 255 <, an | 1
PR PRI TP el

for 1<ps2.
(2.2.26) follows by integration of the 2 < p <= i{nequality. Using
Minkowski's inequality for powers between zero and one, 12.9 in [HS], it

T e

follows that




(J]% I ) )/ e W)/
A Y W
([ 3+ b1 &)
from above, and so (2.2.27) holds. B

2.2.28 Proposition. If H=Cg() , E cQ, and the inequality
(2.2.29) I |¢|p dy s ¢ I |ve| P ov
holds for all ¢ e c;(n) , then:

(2.2.30) c,(€) = 1nf{j P av: uew)Pla)
u21 on E _ quasieverywhere,
and u is quasicontinuousj ,

and
(2.2.31) ¢, (Clul >A}) %I (vu]P dv

for all quasicontinuous u ¢ w&"’(a) .

(2.2.32) If w ¢H1’p(n) is quasicontinuous for n=1,2,... and
n 0

'{un} is Cauchy in w“,"’(n) , then there exists u ¢ Né’p(n) s U

quasicontinuous and a subsequence {n,} such that u"1 +u in wg"’(g)

and uniformly off open sets of arbitrarily small measure, and so




pointwise quasieverywhere as well.

2.2.33) If C(E) <=, there exists u e W'P(a) such that u is
quasicontinuous, 0 <sus<1, u=1 everywhere on E , and

I [vul® av = c (E) .

(2.2.34) 1If (u1.\7u]) is an extremal in the sense that u; ¢ wé"’(n) ,
u 1s quasicontinuous, uy 2 1 quasieverywhere on E , and
I IVu1|P dv = C,(E) , then (u;,%u;)} = (u,%u) in w;"’(n) » where

(u,Vu) 1is as in 2.2.33." Also, u = u; Qquasieverywhere.

@.2.35) If Q' is open and bounded, @<, E<q',and CylE) =0
for H = Cy(a) , then C,(E) =0 for H' = Cpla') .
In consequence , if either u 1is bounded or v < cy and if

ue H};’(n) » u Tlocally quasicontinuous and ul € Hg'p(n') » then
C Q.

u| ,. 1s quasicontinuous with respect to Q' .
Q

Remarks. If (u,Vu) is an extremal as in 2.2.34, then . will be
called a capacitary extremal of E . It is clear that it is essentially
unique.

The assumption of the Poincaré inequality 2.2.29 may be avoided by the use

of a definition of Hg',’p(n) which does not require u ¢ Lp(os.n) for
ue uf,"’(n) .




Proof of Proposition 2.2.28. As will be shown in Proposition 2.2.41,

the inequality (2.2.29) implies that if H = Co() , then w(E) s
cpCH(E) for all Borel sets E . Thus any set of CH capacity zero
{s automatically of « measure zero. Therefore if u e wg'p(n) s
then redefining it on a set of CH capacity zero will not alter the
Lp(m.n) equivalence class in which it 1ies and so it is unchanged
as an element of Ng’p(n) . A1so. if it is quasicontinuous initially,
then from the definition of quasicontinuity it will remain so. This
property will be used periodically throughout the rest of the section.
Given u ¢ Hg'p(n) » U quasicontinuous and u 2 1 quasievery-
where on E , pick ¢n € d;(n) such that ¢y * U in Hé’p(n) and
uniformly pointwi§e-off sets of arbitrarily small capacity. Let

Eve " {xeq: ¢ (x) 21-5 for all nzh} ,

. p
s0 6y, s T I ALY
1 p
s (] 1P &+ )

where ey + 0 as N+= ., Since the ¢, converge uniformly to u
off sets of arbitrar§1y small capacity, there exist FN c  such that
Ch(FN) < eﬁ , eﬁ +0 as N+o , and (u2l} S-EN,G v FN . As a

result,

CH(E) s CH({uzl}) S CH(EN,G) + CH(FN)

g ()




Let N+« and then § + 0 to get CH(E) sI |\7u|p dv . Given

€ >0, pick O open, E €O such that CH(O) s CH(E) +e . Choose

K, compact, K 4+ O such that C(K )+ C(0) and ¢ e C';(n) such

that ¢, 21 on K  and I'|v¢n|p d s CH(Kn) +27",

(2.2.36) By Lemma 2.2.25, using H = le , it follows that
) P P
[ Vo, -V, N +J o, +V6
-4t A

1 ]
< 7[ |W;“|p dv +-2-I lv¢mlp dv for p=z22,

and
v¢n -v¢m P 1/(P'1) v¢n +v¢m P 1/(9'1)
——0 & + ——T
< (%] |V¢n|p dv + %I |v¢m|p dv)”(p']) for 1<ps2.
tn in{n , m}
—5— 21 on Knam » where nam = min{n,m} , so CH(Krwn) S
v +v9 P
I l-—"z—-"l l dv . Using this inequality on the above and then taking
the limsup , recalling that C(Kn') + C{o) , it follows that E
ngm“ i
) ;
v -V
ﬂ 1imsup DM dv +C.l0) s Cylo) '
. n.m-] — < H H

S

for p22. A similar inequality holds for 1 < p < 2 so the V9, are
d
Cauchy in X LP(v.a) . The inequality (2.2.29) now implies that the o




are Cauchy in Lp(m.n) and so the ¢, are Cauchy in N&’p(n) . The
¢, converge to some u e H;’p(n) which can, by Proposition 2.2.21, be

chosen such that a subsequence ¢n converges quasieverywhere to u ,
] i

and so u 21 quasieverywhere on O and u is quasicontinuous.

In addition,

I [ulP ¢y = limJ v6,,1P dv
o
s Tim (G, (k) +2™")
= CH(O) s C,(E) +e

and so (2.2.30) is established. W

Proof of (2.2.31). Using (2.2.30) and arguing as in Proposition 2.2.18,

it follows that CH({hd >1}) s-j% IIVulp dv for all quasicontinuous
A

U e N;l)'p(ﬂ) . B

Proof of (2.2.32). Proceeding as in the first part of Proposition 2.2.19

implies that a subsequence of the u_ converges uniformiy off sets of

n
arbitrarily small capacity. Since the capacity of a set E can be ap-

proximated arbitrarily closely by capacities of open sets containing E ,
it follows that the exceptional sets above may be taken to be open. Let

u be the Hs’p(n) 1imit of the u Redefine it on a set of « measure

n L)
zero as in (2.2.22) so that U, U quasieverywhere. Arguing as in the

last part of (2.2.23) with ¢ a sequence in d;(n) such that ¢ =+ u

in H;'p(n) , 1t follows that u 1is quasicontinuous. B

.M



Proof of (2.2.33). Given E < Q , it can be seen from (2.2.30) that

there exist quasicontinuous u ¢ wg'p(n) such that u_ 2 1 quasievery-

n
where on E and

CH(E) s I IVunlp dv < CH(E)+en s €, +0 as n+o,

Using Clarkson's inequalities as before, it follows that the un are
Cauchy and therefore by (2.2.32) there exists u ¢ N&’p(ﬂ) quasicontinu-

ous and a subsequence '{ni} such that U, * U in Hé’p(n) and point-
i

wise quasieverywhere, so J |vul? av = CH(E) and u 2 1 quasieverywhere
on E. Use 2.2.5 with ho.] to show that (ho’](u) » X{0<u<l} Tu) €
H;’p(n) . It is also clear from the proof of 2.2.5 that hy ](u) is

quasicontinuous. Also
I X geyeny VUI° & s J [vulP & 5 C,(E) ,

p
but CH(E) < I |x[04u<1} vu[" dv from (2.2.30), so equality holds and h0.1(u)

is the required extremal after redefined on a set of capacity zero. B

Proof of (2.2.34). Clarkson's inequalities imply that I IVU] -Vulp dv =0
and the inequality I ¢p dw s ¢ I [V¢|p dw , which holds for Uy » U by

taking 1imits, then implies that I lu]-ulp ds = 0 and so (u].Vu1) =
(u,V) in ug'p(n) . If 9 e CB(Q) and ¢+ (u,Yu) in H;'p(n) .
then o * (u],VU]) in wg’P(n) , in which case there is a subsequence
of the ¢n which converges to both u and Uy quasieverywhere so that

U=y quasieverywhere. 8
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Proof of (2.2.35). If K cQ' 1s compact and G,(K) = 0 , then
3¢,c¢ C;(n) such that ¢ 21 on K and I Iﬂlcbnlp déw+0. If

e

] f

1 X 2% :

‘ y 2y |

g(x) = { 2x FSX$3, ¢
-1 xs-%-,

o e C';(IR) R supportog[-%.%—] » 020, Ia =1, and o(x) =
o(-x) , then let f=o+g so that |[f| <1, f(x)=1 if x21,
f(0) =0, and |f'| < 2. It now follows that f(e ) e Cola) ,

f(o) =1 on K and j vFe, )P o < zJ' 19|P dv » 0 . An ap-
1ication of Clarkson's inequalities implies that f(¢n) +0 in
H"p(n) as in 2.2.36, and so f(¢n) +0, w almost everywhere.
Choose n ¢ (fa(n') » 0snsl and n=1 on K so that nf(4) =1

on K and

] [9(nf(o,)) [Pav s j [¥n(P 1£(e,) Pav + 2 I |96 av
+0 j}

since |f(¢n)| <1, f(¢“) +0, © almost everywhere, and v {s ab- |
solutely continuous to w . It is now clear that CH,(K) =0 . If 4
Ecq and CyE) = 0, then Cyi(K) = C,{K) =0 for all K<E, i
K compact but then the capacitability of Cys as in Proposition 2.2.15 |

implies that CH.(E) =0.

1,p
Toc

ol «¥P(a') . Choose {4}, ¢ €C(R) such that ¢ +u- in

Suppose u e W, (Q) , u locally quasicontinuous and




H}(’,g(n) and pointwise quasieverywhere and {wn} . c‘;(n') such
that vpn+u| in H&’p(n') and pointwise quasieverwhere. &' s
nl
compact since Q' is bounded so ¢n‘ -»u‘ ' in w"p(n') and
Q! Q

from the above ¢n| * ul » Q' - quasieverywhere, but then u‘
Q Q'

Q'
is Q'-locally quasicontinuous. By (2.2.24) it now follows that

"’n +ul ., R'-quasieverywhere, and so u| is Q' -quasicontinuous. N
nl

nl

The set function EH,P defined in Section 2.1.0 is unfortunately
not subadditive, even in the case of Lebesgue measure, though it can
be redefined, as CH.P has been, to‘ give a more natural measure of
non-compact sets. If Q' isopen, O =, w(@) <=, A is a posi-
tive Borel measure with A(R') =1 and A is a subset of C‘;(n)ln'
closed under addition, and under composition with C (R) functions

having bounded derivative, then let
ACE inf{L. [v{Pdv: A . 621 on K, and L ¢ & =0}
for all sets K, K=K' anQ' for some compact_ K'eQ,
C'.'i(o) = sup{ﬁf.;(K): K=K'nQ' for some compact K'cQ and KcO}
and
CR(E) = inf{Cy(0): 0 is open, EcOcR'}
forall Ecq'.

2.2.37 Proposition. (E) = C.(E) if E isopenor E=Ka Q"

c
for some compact K c @ .




Proof. The proof is virtually identical to that of Proposition 2.2.14
but with compact sets replaced by the intersections with Q' of com-

pact subsets of @ . @

2.2.38 Pfogosition. Assume A s cw , VvV S Cw , and
(2.2.39) I o -]wq ose [|v¢|° &

for all ¢ e A .

If K=K nQ' with K' cQ compact and ER(K) <w , then
Jue N"p(n) such that u is locally quasicontinuous, I udi =0,
u 21 quasieverywhere on K , and I |ou|P dv = Eﬁ(K) .

Proof. Choose bn € H such that by 2 1 on K, I én dA =0, and

I |V’¢n|p dv - ER(K) . Use C1ar§son's inequalities as in 2.2.36 to show
that the v¢ are Cauchy in KEI LP(v,0) . Inequality (2.2.39) then
implies that the ¢, are Cauchy in LP(w,Q) so the ¢, converge in
HI’p(n) to some u which can be chosen locally quasicontinuous by

(2.2.24), in which case for some subsequence {"i} the °n1 +u

pointwise quasieverywhere and u 2 1 quasieverywhere on K . Since
Agsco, it follows that the ¢n converge to u in L](l,n) so that
I udi =0 . Finally, I [P dv = ER(K) since I vanlp dv =+
C.(kK) . B

N

Sobolev Inequalities. The characterizations of the'weights for the
two inequalities (2.1.4) and (2.1.15) wil) be translated into the
present setting, (2.2.42) and (2.2.46), and weights of the form
dist%(x,K) will be shown to be admissible.
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A number of sufficient conditions for special cases of (2.2.42)
and (2.2.46) appear in the literature. The conditionon w, Vv assumed
in [K], [MS], and [T1] is fairly strict. A result of Muckenhoupt and
Wheeden [MW] introduces a less strict condition but the resultant inequali-
ties are not useful here, since they assume that the density of v is a ' ¢

fixed power of the demsity of « . Welland [W] has given a simplified proof

of this result, the methods of which (along withthe Besicovitch covering

lemma ({G]) can easily be adapted to yield suitable inequalities if w.v

R NPT e Tl e O

satisfy a condition of the form

(Is alx) dx)Vq* (JB V(x)-]/(p*-]) dX)(p*-”/p* sc IBI(]“”n)+€

for all balls B<cQ , 9 a bounded open set and for some € >0,

p* <p, and ¢* = p*% . If @=v, then this includes the Aj weights
(M1]}. The assertion above will not be put into rigorous form and
proven since it departs from the general direction of these notes.
The fact that Ap weights are admissible for the appropriate Sobolev
inequalities was also recognized by E.B. Fabes, C.E. Kenig and
R;P. Serapioni (FKS] independently and at the same time as by the
present author. The use of fractional integrals in this approach
turns out to be too crude to allow a characterization of the weights
needed for the Sobolev inequality (2.2.42)and (2.2.46), since it
annihilates important geometric properties of certain classes of
weights. A simple example is provided by the weights w(x) = v(x) =
|x|® in @ = B(0,1). The condition assumed in (K] forces -min{p,n}<ac<
min{p,n(p-1)}, while altering the methods of (MW] and [W] allows

-n < a < (p-1)n and the present methods allow -n < a < =,
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It will be assumed in Lemma 2.2.40 and Theorem 2.2.41 that
H= CB(Q) and fl = CZ(Q)I » where Q' is open, ' = .
Q.

2.2.40 lemma. If KcQ is compact, then 3 Ko £ 9@ such that Kp =
C -]
is € and CH(Kn) -+

f¢n21} for some ¢, ¢ C‘;(n) » K Ky 3K

CH(K) .
If Keq@', K=K' nQ for some compact set K' ¢ Q , then
’ L ' ' » LU o
3K, =Q such that K\ = {¢;21} for some dp € CO(Q) » 3K s €,
Keki, and ER(K;‘ nQ') + ER(K) .

Proof. Let K< Q be compact. Given e , O<e <1, choose ¢ ¢
CB(Q) such that ¢21 on K and J.lvqslp dv s C (K) +e . By the
Morse-Sard theorem {|V$] =0} n {$ =t} = for almost all te R .
Choose one such ty with T-e s tg < 1 so that {¢ zto} is a compact

set with smooth boundary, K ¢ {¢ zto} and
C ({¢2t:1) < —I—J [vo|P dv
H 0 1-€
1
I (C4(K) +€) .

Sequences K , ¢, can now be easily chosen.

If Ke@', K=K'nQ' for some compact set K' ¢ Q , then
argue as above with ¢ chosen so that ¢ 21 on K, . $dr =0
and L. lvo|P dv s C'_‘(K) +¢ , and with CH({¢ zto}) replaced by
cﬁ({’ Eto} nﬂ') . B

2:2.41 Theorem. If 1 <p sq <=, then

(2.2.42) (I Ju]9 d@)‘/q s c,(f |vu)P d\,)l/p




:
:
1
¥
i
¢
!

for some c, >0 andall ue C';(Q) iff
(2.2.43) "%(x) s by €i7P(K)

for some b, > 0 and all compact sets K c with € boundary

iff
(2.2.44) o/%E) < by Ci/P(E)

for some b] >0 and all Borel measurable sets EcQ .

If p=1 and v is absolutely continuous with respect to
Lebesgue measure on O with density v e L1(9) , then (2.2.42) holds
iff

(2.2.45) m]/q(K) s b, liminf ;—I v dx
&+0 C6

for some by > 0 and all compact sets. K with ¢® boundary, where
C‘s = {x ¢Q-K: dist(x,K) <6} .
If v is continuous, then this reduces to m]/q(l() s
b, [ 5 a™? .
1ok
If w(@')<>e, A(R')=1 and 1 spsq<=, then

(2.2.46) (L [u .L'm‘qdm)llq . CZ(L vl &)

for some c,>0 and for all ue Ch(R)]
2 0 Q'
iff

(2.2.47) oK) < b, c;’p(x)

for some b, > 0 and a1l Kc Q such that K =K' n Q@ for some

compact set K'cQ,
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(2.2.48) w/9E) s b, c:.""(s)

for some b, > 0 and all Borel measurable sets E c Q' .

If p=1 and v is absolutely cont1nu6us with density v ¢ ! "),
then (2.2.46) holds iff
(2.2.49) m]/q(K)k(n' -K) s b, Timsup %J v dx

§+0 Cs

for some b2 >0 and all K Q' such that K =K' n Q' for some
compact set K' c Q , and where Cé = {x ¢Q'-K: dist(x,K) s§} .

If €y I),l » 11,2, are chosen as small as possible, then b‘ <

¢ sp]/q p'”p b1 and bzscstDVq p‘”p l:;2 .

Proof. Consider Theorem 2.1.7. It is c]aiﬁed that (2.1.9), (2.2.43),
and (2.2.44) are all equivalent. It is clear that (2.2.44) implies both
(2.1.9) and (2.2.43). (2.2.44) follows from each of tt.:ese in a similar
manner so only one implication will be done explicitly. Assume (2.1.9).
Given a compact set K 5_5 ,» Lemma 2.2.40 supplies a sequence {Kn} of
compact sets of the type considered in 2.2.40 such that '/9(K) s
oK) s by cl/P(k) + b, €/P(K) . Given a Borel set Ecq, use the
regularity of o to choose a sequence of compact sets K"‘ such that
K"' <E and m(K"‘) + w(E) , so

oY) = ta o9k ) s b, Mimsup Cylk,) < by CyLE)

and (2.2.44) is verified.
The equivalence of (2.2.42) and (2.2.45) now follows directly from
Theorem 2.1.22.

R P O U SRR



The second half of the theorem follows in a similar manner to the

first using Theorem 2.1.17 instead of 2.1.7. B

It will be shown in Theorem 2.2.56 that weights of the form
dist®(x,K) admit Sobolev inequalities of the type (2.2.42) and (2.2.46).
These will be used in Chapter 3 to demonstrate the Holder continuity of
solutions of certain differential equations which have these weights as
degeneraéies. |

It will first be shown that two weighted isoperimetric inequalities
hold under the conditions (2.2.51), (2.2.52), and (2.2.53). The rather
technical verification of these conditions for specific geometries is
left to the proof of Theorem 2.2.56.

Let w , v be nonnegative Borel functions defined everywhere on
§(xo,2R0) _c_,le , d22 . Foreach r, O<rs ZRO » let Cr and
Dr be Borel measurable subsets of §(x0 .ZRO) s Cr will correspond to
sets where v s "small" and D} to sets where « s “large". Finally,
let Pz be the projection of le onto the hyperplane {x e]Rd: x*z=0} ,
ze R, 240 , Pz(md) Will sometimes be casually identified with R%")

a(d) will be ihe d-dimensional measure of the unit ball in RI .

2.2.50 Proposition. Assume that the following conditions hold for all
B(x,r) £ B(xg . 2R) and z ¢ R, 240,

(2.2.51) K& P (€, nB(x,1)) s 2‘ g -1,

(2.2.52) o{B(x,r)) < c]m(B(x.r) 'Dr)

(2.2.53) mx o sc, |8(xr){FWVDIA gy
B(x.r)-Dr B(x.r)-cr




for some Q=1 and ¢, , ¢, independent of r, x, z , then there !
) 1 2 ]

;;‘ié.ts a constant c(d) such that
1
(2.2.54) If X 1is open and IB(xO.RO) -X] 2 7 IB(xO,Ro)I , then

m']/q(Xn B(xo.Ro)) < cf(d) c.;'/q ¢y vd_.l(QXn E(xo.Ro)) .

(2.2.55) If X 1is open and X E.B(XQ'RO) » then

m”q(X) s ¢(d) c.lwq c, vd_1(ax) .

where w(E) .I w and vd_.l(E)-I\:de"l .
-k E

The abbreviations max , min have been used instead of sup and
inf to emphasize that it is the true supremum or infimum which is
i{ndicated and not the essential supremum or infimum. The proof of
Proposition 2.2.50 will be deferred till later. '

Suppose K <R , K[ =0, d22,and a,B ¢R . Then
let olx) = dist®(x.K) » v(x) = dist®(x,K) , and A(t) = {x e R%:
dist(x,K) st} .

2.2.56 Teorem. If 1593z, %I
conditions hold for all B(x,r) ¢ B(xg:Ry) and z ¢ R

2d+g -1, and the following

(2.2.57) If g>0, then H¥'(P,(B(x,r) a Aleyr)) s Z‘Sdi rd-!

1
for some € 0<e1<2-.

(2.2.58) If a <0, then w(B(x,r)) s c]m(B(x.r) - Ale,r)) for some

c1>0 and some €y 0<s2<%,
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with €19 €5 » and < i{ndependent of r , R0 » X, Z, Xgo» then
there exists a constant <, independent of Xg » Ro such that

(2.2.59) If X< RY , then

.

o /9(x nB(x5sRy)) a(B(xgsRy) - X)

S U SO T WD
- Lo

< ¢ R'(‘a/q)-s Réd/q)-cm w(B(xgsRy)) vy_(3X nB(xysR0)) .

(2.2.60) If X g B(xy.R)) » then

0/9(x) s c, R/ pld/a)-d41 |, (ax) ,

where Rk = max{Ro .dist(xO,K)} .

1 1 1.1, =
In addition, if 1 2 5 >1-=, : p'*q 1 and o(x)

d1stp8'(p'1)°(x.K) = v(x)P m-(p-]) , then there exists a constant ¢
independent of Xg » Ro such that

3

(2.2.61) (I I¢I"a»)]/t s ¢ R'((a/q)‘-e id/a)-¢1 (I (70| o)‘/P

for all ¢ ¢ CO(B(xO.Ro)) ,

1
(2.2.62) (L”'R]FT JB Mtw)l/t ey R'((c/q)-BR(()dIQ)-dﬂ (L ve]P U) /e

.for all ¢ ¢ d'(B(xo.ZRO))IB(o R) and B = B(xo.Ro) .

If K = U?-l M;, M, a compact c? manifold of co-dimension v;> 2, . ti

or a point (y; =d), and a>-y,, i=1,...,n, then (2.2.57) and (2.2.58)

i
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are satisfied for all x ¢ IRd and r ¢ (0,2) so that (2.2.61) and
(2.2.62) hold for all Xgs Ry - In addition, if Bp-(p-1)a > -y,
then

(2.2.63) (/)8 gld/al-dtl o Vg RN o™/ P(B(xg.R)N) By

for some C4 independent of Xq » Ro .
Remarks. The conditions on w, o allow o/w to degenerate to zero

on K and also q may be chosen arbitrarily close to 1 so as to
allow consideration of arbitrarily large p .

The assumption that M; 1s a compact manifold is not necessary but
merely convenient. The conclusions of the theorem are true for much
more general sets K. :

The specific estimate for the coefficient Rl((G/Q)..B Rc(,d/Q)-dﬂ given
in (2.2.63) is important since its existence will lead to a proof that
solutions of certain differential equations with degeneracies of the form
dist®(x,K) are Holder-continuous.

[t is first convenient to prove a lemma which is a generalization
of a lemma of Federer [F1) which he used to provide a simple proof of an

important result of Gustin [GU].

2.2.64 Lemma. If A, B are compact sets, AuB convex with diameter

§ and E {s a Borel set, then
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d .d

1A 18] -a-c(’%%-Hd']((AnB)- E) + — J KT (p, (E)) dz .
$ |z] <6

62d-'|

§" ¢

Proof of Lemma 2.2.64. If A, B are compact sets, AuB convex with

diameter § and E 1is a Borel measurable set, then

A1 181 = [ xy(x) xg(») o ay
“ xA(x) xB(x+z) dx dz
-J xeA, x+zeB}| dz
|z|56
< I J H! ({x: xeA and x=g+tz for some t}) dfdz
|z]<8 ‘P, (AnB) :
o1
<8 l2]s8 H (Pz(AnB))dz
481
< Ilzls (P, (((AnB) - E) v E)) dz
.5 JI H91(p_((AaB) - E) u P (€N dz
d-1 d-1
s 8 IIzISC[H (P, ((A08) - £ )+ H3T(P_(EN] 4z
s a(d) s T ((AnB) - E) + & Jl < W1 (p,(E)) ¢z
Z|s -
2d

Dividing by § now gives the result. 8

Proof of Proposition 2.2.50. Assume that (2.2.51), (2.2.52), and (2.2.53)
hold and that X 1is open and [B(x4,Ry) -X} 2 12- |B(x0.R0)| .

2.2.65. Given x e XnB(xo.RO) » 3r, 0<r<2R), such that
|8(x,r) nB(xqsRy)n X| = %— [B(x,r) nB(xy:Ry)| since

[B(x,r) nB(xy:Ry) nX| {s continuous in r, |8(x,r) nB(xo.Ro) aX| =
|B(x,r)| = |B(x,r) nB(xy:Ry)| for small r and




[B(x,r) nB(xo.Ro) nX| = IB(XO,RO) n X|

- IB(xoino)l 'lB(xotRo) 'xl
3 %lB(xo,Ro)l

= 3 1B(x,r) nB(xq.R)]|

for r = ZRO .

tet r' = r(1-¢) and R6 = Ro('l-e) for small ¢ so that
18(x,r') nB(xquRg) aX| = 3 Fle) |B(x,r') nB(xguRy)| + where flc) + 1
as €+ 0. Now apply (2.2.51) and Lemma 2.2.64 with A = B(x,r') n
leo.ﬁéf nX, B=(B(x,r") nB(xo,R_é'»- X and E=C_ n B(x,r') to

get that

[B(x,r') nB(xQ'_RC'l) nX| [(B(x,r') nB(xy,R0)) - X|

&9 ¢
a(d) ,d-1 : = aZ(d[ pd-1
S ;S:+ H ((an WX.Y‘ ) nB(XO.Ro,, - Cr) + 25d*4 ;a-:r

for & = diam B(x,r") nﬁ(xo.ﬁ'g) .
A simple calculation shows that 6§ < 2r and

d
in(r,
[B{x,r) nB(xq:Ry)| 2 a(d)(T—n-(%Egl)

d
2 a(d) (7) .

s0 letting ¢ + 0 1t follows that




|B(x,r) nB(xo.Ro) ady | (B(x,r) nB(xO,RO)) - X|
—TB(x,r) nB(xo.‘oj]' ~IB(x,r) n’B(XOoJR-O)]

< Ji‘%‘—ﬂ"“(( 2X nB(x,r) nB(xguRN - C.) + 75 ,
a(d)r - 0°'0 r 23

2Sd-ﬂ

1
and by 2.2.65, s ———

H3=V(( ax nB(x,r) nB(xquR) - C,) » and

IB(x.r)l(d'”/d < 29 a(d)']/d Hd'](( X aB(x,r) nB(xy.Ry)) - C.) .
Using (2.2.52) and (2.2.53), it follows that

0/ 9(B(x,r))
< c}/q m]/q(B(x.r) ~0.)

< c}/q max IB(x.r)l]/q

B(X,Y‘)’Dr
Vv d-1)/d
sq'%q B(xT:")“crv Bt
s 250%8 44y 1/d c}/q c, . min v H9=1 ((ax n B(x,r) n B(xqsRy)) - C)

B(x.r)-Cr
.s 25d+1 a(d)'1/d C}/q cz vd-l(axns(x’r) nB(xo,Ro» .

Now apply the Besicovitch covering lemma [G] to find Fy » i=1,...,m,
each F, a collection of pairwise disjoint closed balls B, 8=8(x,r)
as above, such that ) F, 1s a cover of X'n B(xo.Ro) . Since m can
be c;hosen to be depenjient only on d, it follows that w(X nB(xo.Ro)) <

mos( BL{'F’ B) for some i .

Let Fi = {B(XJ.TJ)}j so that
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w9 nB(xguRe)) 5 w9 ( § a(B(x;ar N}
s m/9 ) m]/q(s(xj.r.n
. J J
s m/9 25d+4 a(d)-jld c}/q ¢,

§ V413X nB(xr;) nB(xy,Ry))
s C(d) C}/q Cz vd_](ax nB(XO-Ro))

since the balls B(xj,rj) are pairwise disjoint.

(2.2.55) follows almost identically since given x ¢ X , there
exists an r, 0<rs 2R, such that [B(x.r) Xl = 7 [8(x,r)] .
This is true since B{x,r) ¢ X for small r , and X ¢ B(x,r) and
1B(x,r) nX| = [X] < |B(x4sRy) s'% |8{x,r)} for r =2R,. Lemma
2.2.64 is applied with A = B[x;r") nX and B = 8(x,r')-X . A short

calculation simpler than the one above then leads to
[B(x,r)] (4114 ¢ 2%4 aa) /4 T ((ax nBlxr - €,)

and the proof is concluded as above with the exception that B(xo,Ro)

does not appear. W

Proof of Theorem 2.2.56. Recall that A(t) = {x e R%: dist(x,K) st} .
Let Cr = A(e]r) if 8 >0 and Cr =g if 8 <0, and let Dr =

A(tzr) if a<0 and D = @ if o 20 . Assumptions (2.2.51) and
(2.2.52) now follow from (2.2.57) and (2.2.58). (2.2.53) is verified

as follows.
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There are a number of cases to consider, depending on the relative

i geometry of K and B(x,r) and the signof a and B . Assume

B(x,r) EB(XO'RO) » and let r, = dist(x,K) .

A, If r< -;-r] , then A(eir) nB(x,r) =g , i=1,2, since

e_'<-;-,andso

%—r-l)a a2 0
mx o s a
B(x,r)-Dr rl)
-2— a<0 ’
(3r1f
5. B <0
8( mir)| c v 2 8
X,r)- r
r (-2‘-) B>0 .

"
B. If rz-z-.then

(3r)°® a20
max ®w s ¢
B(X.l‘)-Dr
\ (Ezrp a<0 ,
[ a8
min vz‘(ar) B0
B(x,r)-cr
\ (e.r)e 8>0

The proof of (2.2.53) is virtually identical in each of the cases so
r
only one will be done explicitly. If a <0, 8>0, and r < _21 .
then : o




/ / -
s(%‘-jxqs(;]-)aq :21-)6 " min v |
. X

.r)'cr

g 28-(e/q) a(d)(1/q)-((d-1)/d)r§a/q)'-s,.(d/q)-d+1lB(x,r)'((d-U/d)-UqB( mi% -
: x,r)-C.

¢ o RO/E QU g (@A gy
B(X.P)-Cr

for R, =* max{R0 , dist(x,K)} .
Since (2.2.51), (2.2.52), and (2.2.53) are verified, it follows that
(2.2.54) and (2.2.55) hold. It will now be shown that the assumption

that X dis open is superfluous. If 23X nB(xo,Ro) has positive
d-dimensional measure, then (2.2.59) holds since |[K|.= 0 . Otherwise
assume |3X nB(x,sRy)| = 0 . Let X' = interfor X 1n which case

X' < X and |B(xo,R°) -X| = |B(xo.R0) -X'| » so if [B(xy.Ry) -X| 2
%|B(xo.R0)| » then

(2.2.66)  o/9(XnB(xqRN = 0!/ I(X* nB(xguR))

/9)-8 o(d/q)-d+ '
< cR&a q . Ro \)d-](ax ﬂB(XooRO»

/q)-8 p(d/q)-d+
s cR{®/9)-8 g Vg.1(3X nBUxguRY)

A simflar argument works for (g.2.55). in which case (2.2.60) is

proven.




"!lll"-'-""-""*'-"""-"'l'-'-""""lllll'l-!!llllll-!F'llll!!ln----un---nr o

(2.2.59) follows directly from (2.2.66) if IB(xo.Ro) -X] 2
]
?-la(xo.Ro)l since w(B(xy:Rg) -X) s w(B(xg,Ry)) . Ifﬁ [B(xqsRy) - X| =
7 1B(x .Ro)l » then Tet X' = B(xy.,R))-X so lB(xo.Ro) -X'| 2
% [BlxgsRy)| » and (2.2.66) implies that

69X aB(xyRy)) s ¢ RI/V)B RII/Q)ET | (ax' nB(xyuRy) -
X' ¢ X so

o'/ 9x 0B(xqsRo)) @(B(x.Ry) - X)
s a(B(xg.Ry)) m‘/"(s(xo.no) -X)

< cR'((a/Q)-B R(()d/Q)-dH w(B(xqsRg)) vy_1(3X nB(xq:Ry)) .

a(B(xqsRy)) >0 since Kl =0, so let A= © /(B(xsRy)) . If v
were integrable, then (2.2.61) and (2.2.62) could be proven by appealing
to 2.2.41, but there are interesting cases when this is not the case.

To handle these, Section 2.1.0 is used in conjunction with a direct

proof of the capacitary conditions involved. It will first be proven

that @/ 9(a) < CZR'((G/Q)-BR(()d/Q)'d” Ry,1(A) for alllevelsets A ={¢so} ,

deH= c"(s(xo.zno)) B ) o {6: |V eLP(V)} ,
*0*"o

in which case it will follow from Section 2.1.0 and 1.3.5 that (2.2.62)

is true in the case p=1 and t =q . It will then be shown that
(2.2.62) holds in general.

Jrowen




Given A = {¢s0} for some ¢ ¢ H ., pick Y ¢ # with y s 0 on

o /A2 t)) s o' U petd) A(B(xysRy) = {y<t})

d-1

< cz Réalq)'s R(d/q)-d+] v dH

0 I3{¢<t}n8(xo,R0)

R A NP> . P WU - NPT RNBIY - T ST T 52 Y

for all t>0 , recalling that the domain of ¢ is B(xo.Ro) . It is
n-1

claimed that ﬁ;(t) = I v dH a.e., so using the in-

a{¢<t}n8(x0,R0)
finite arithmetic conventions in 1.3.5 it is seen that

u‘lq(A) s ¢ Rgﬂ/Q)'B Réd/Q)-d+1

Taking the infimum over all such ¢ gives

a}/q(A) s ¢, R&élq)-e RSdIQ)-d+1 RH.I(A) .

Theorem 1.3.5 states that RH'](A) = EH 1(A) , so (2.2.61) holds by
Theorem 2.1.17.

To prove the claim use the co-area formula to get that

Iwl v
d-1

*
E) =
uy(E) I xw"(s)na(xo.no)

v dH dt

) I; l;{¢<t}nB(xo,R°)

for Ec R' . These integrals are defined and finite since |W| e

Lp(v) and v can be realized by a pointwise everywhere, monotone

fncreasing 1imit of bounded functions. This means that
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j v a4l s locally integrable so that n.(t) =
3(y<t}nB(xy.R) v

and-1 a.e. as required.

Ja{wt}ns(xo,no)v

A similar proof, using the capacity KH,] » establishes (2.2.61)
for the case p=1 and t=q.

To prove (2.2.62) in general it is necessary to prove the t =q ,
p=1 case for ¢. replaced by (¢+)° = x{¢20} ¢°‘ for a 21 . Todo
this choose a C° smoothing (f} of f(x) = X(xe0} X Such that
fn + f uniformly and fy X{x20} with 0 < f"‘ S X{x20} ° It is
clear that f‘:(¢) + (67 in Ll(m,n) and L%w,2) so that substitut-
ing f1(¢) in (2.2.62) with t=q, p=1, and then taking limits,
it follows that (2.2.62) holds with (¢+)°‘ instead of ¢ . The same
fs true for (¢7)% = X{420} ¢% .

One additional calculation is necessary. If a and b are non-
negative and a 21, then |a-b]® s |a®*-b%| since if a 1is the
largest of the two, then a = 6b forsome 6 , 0s 6 <1, and
|a-b|% = (1-0)%% < (1 -9%)a® = |a® -b®| . It will also be used,

for B = B(xo,Ro) , that

. e
1 1 S

(MM L Ju(x) " w(B) L u(y) w(y) dy|” w(x) dx)

1/S

s (m%y L (E(]Ey IB Ju(x) 'U(.Y)l w(y) dy)s w(x) dx)

s (“(13) JB (0(18) L Ju(x) -w—(%-)-IB u(z) w(z) dz| wly) dy)s w(x) dx)lls

+ (;1357 L (a%)- L luly) -ﬁy L u(z) w(z) dz| w(y) dy)sc»(x) dx)]/s

é
E
|




| 1/8
ﬁ 1 ] S
;: . 2(5-(,—3)— L Ju(x) ()] L u(2) w(z2)dz]” w(x) dx)

s0 that the first two integrals are comparable. Now let a = -& 21 and
] let u(x) = ¢(x) - a%)- L¢(y) w(y) dy so that

(I lul® w(x) dx)“q

1/q

. (L lu(x) - by L uly) oly) dyl® o(x) dx)

s(L (ZR]ET L [u(x) -uly)] w(y) dy)t w(x) dx)”q
s (L (;(]57 L lu(x) - u(y) (% wly) dy)q w(x) dX)‘/q

s 27 [([ (ahy [ 1700 -0’ 001% ) @) et )"

+( L (st L lu™(x) =" (N1 wly) dy')q w(x) dx)”q]
s 297 [(L (mlﬂL HFean®- (' (N2 wly) dy)q m(x)dX)Vq
R (L (o fs 1™ ()% = (™% aly) dy)? a(x) dx)”q]

s [(Ia Fu(x)®- RIBT L (W )% aly) ayl? wlx) dx)”q

+ (L [ (u™(x)®- ;(-15-)- L (™ (y)%aly) dy]? olx) dx)v.q]

n3




(o/q)-8 o(d/q)-d+1 a a
R R 7 v }
% 0 [JBn{u>0}| (v JBn(u<0} 7€y
(a/q)-8 n(d/q)-d+1 a-)
= cR R
cr { JB(xo.Ro) 1u[®7 [vu] v

2 /-8 /a4t ([ (et )P ([ gypp gy °

It is easily seen that (a-1)p' =t , -Jp-. = %— » and Yu = V¢ so that

L |

(L lé -a!B_y IB Wlt m)]/t < CR'((G/Q)‘B R(()d/Q)‘d"'] (J lv¢|P 0)1/9 .
To prove (2.2.61) let ¢ = W for a = ;:- so t.hat

(I lu]®d w954 cle((QIQ)'B R(()d/q)'dﬂ (I Ml [vu] v)

and so (2.2.61) follows after using HGlder's inequality.
If K = U'i’_lMi. M; a compact c? manifold of co-dimension

Yj2 2 or a point (y; = d) then it is routine to show that there

exist C* To 5o > 0 such that

(2.2.67) H9-1(B(x,r) nB(L) < ¢

d-y ty-'l
for O<r<ry , t <eyr,y = Miny andB(t) ={xe¢ re. dist(x,K) =t} . This

will be used to verify (2.2.57) and (2.2.58) for all x ¢ le

r ¢ (0,») and (2.2.63).

and
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Assume <r for C= (__a_
=< S50+

2 diam K

1/d-1
0T e
a(d-1)

c

diam X + ¢,r so if e, s 5, then A(e,r) < B(x',r') for x' ¢ K
1 172 1

and

Hd-](Pz(B("-r‘)nA(e]r))) s Hd'](Pz(A(e]r)))
< Hd-](Pz(B(xl’rl )))
< HT(p (B (x ser)))

< a(d-1)(cr)d"!

a(d) _d-1
.2+4r

as required in (2.2.57).

If rs To* tsegrs and ¢ > -y , then the co-area formula im-
plies that

( 2.2.68)

2.2.69.

t
dist®(x,k) dH? = [ s% nd"V(B(x,r) nB(s)) ¢
L(x.r)nA(t) st'(x.K) IO s B ' (B(x,r) nB(s))ds

t

s ¢, rd-y I -1 4o

0

c
=0 4~ ot
Sqw v

By covering K with a finite number of balls of radius less

than Yo and applying (2.2.68) with o = 0 , it is clear that there
exists c', ty >0, such that |A(t)] s c' tY for ts ty -
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If %€ PZ(A(t)) » then choose x, ¢ A(t) such that Pz(xz) =
Xy . P;](x.l) nA(2t) contains a line segment of length 2t
since any point within a distance of t from X, is in A(2t) ,
so 2K (P (A()) < [A2t)| s c* 2YtY and WP (AC) s
¢ 21T for b ty/2 .

r t. ¢
If _2Q.<r<2_dj:_m_£ and e]"i_dioa_m'k"the"

KNP, (8(x,r) nA(re ) s W1 (P, (Are, 1)

-1
y-1 /2 diam K \Y~' -1
c' 2 ( c ) €1

so that for € small enough it follows that

d-](Pz(B(X.Y‘)nA(rel))) s_aé% 0 %(d?a

r
Finally, (2.2.57) will be verified for r s -2‘1 LI Xy
PZ(B(x.r) nA(re.I)) and € s min{1/2 .50/2} , then P;](x.l) n
B(x.('l+2:1)r) n A(er:]) contains a line segment of length 2rey .
Using (2.2.68) with o =0, it now follows that

' '2n:1 Hd'l(Pz(B(x,r) nA(rey)) s nd(B(x,2r) nA(2re,)) < E.?- 24 e{ rd 1

and

< ._
KNP, (B(xur) nre ) s 2 22Tl 41




It is now clear that (2.2.57) is verified for a sufficiently small
choice of € -
Let A _(x) = dist®(x,K) and A_(E) =I A (x) dx . It will be
g ; . (¢} E g

-shown for ¢ > -y that

(2.2.70) c" NJB(x.r)) < max’{r .d'lst(x.K)}rd

s ¢ A (B(x,r) - Ale,r))

for some ¢, €y > 0 independent of x and r . (2.2.58) then follows
by setting o = a . Also, considering o = p8 - (p-1)a , it follows that
if pg8 -(p-1)a > -y 1in addition to o« > -y , then

Ry o/ E(BlxguRo) 0™ /P(Blxg.Ry) = ¢ RyRE/® RY/E g E*{PT)o/p prd/P

o ~p(6/9)-8 o(d/q)-d+1
cRKa q) 3 q) ,

" s0 (2.2.63) is verified.
The proof of (2.2.70) will be broken down into a number of cases.
First consider the case where r, > 2r for r* dist(x,K) . An easy

calculation shows that

(r] +I")° c20

o 4
7)

g <0

on B(x,r) , so A (B(x,r)) <c max"{r,.r}r" . Similarly it is seen that
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AO(B(x.r)) 2 C max°{r].r}rd . If €, S 1, then B(x,r) nA(ezr) = g
so xo(B(x,r) -A(ezr)) 2 C max°{r],r}rd .
If ry s 2r and r ¢ o o then it follows from (2.2.68) that
¢ rd*0 Yo

Ao (BT nAleqr)) s e f

Also,

(3r)° c20
)‘c s{

(eol’)0 0<0
on B(x,r) -A(eor) s SO

AG(B(x,r))s )\G(B(x,r) ~A(eor)) + J\O(B(x,r) nA(eor))

+
< ¢ oM

s ¢ maxa{rl.r}rd .

If e, s¢; 5 then |8(x,r) nA(ezr)l sc e‘{ rd so if e, 1s small .

enough, then |B(x,r) -A(ezr)l 2cC rd . Now considering the two cases

0<0 and o =2 0 separately, it follows that
Ag(B(x,r) =A(e,r) 2 c P05 maxa{r],r}rd .

Covering K with balls as in 2.2.69 and using (2.2.68) it follows

that there exists to > 0 such that AG(A(t)) <s¢ t:c""Y for ¢t < tO .

if r0<r52d1aml(.then
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ey

Ao (B(x,r)) = A (B(x r) - A(Z diam K)) *A (A( 2 diam K ))

s c(rd"’_ + tgw)

$ ¢ max {r].r}r
As in 2.2.69, |A(t)| = ct’ for t < ty S0 if ¢, s
to(2 diam K)"! , then
[B(x,r) - Ale,r)| 2 [B(x,r)] - [Ale,r) ]
2 a(d) r§ - cef(2 diam K)Y ,
and so for €, small enough

-

|8(x,r) -A(ezr)l 2 ¢(2 diam K)d

zcrd s

and
Ag(B(x,r) - Ale,r)) 2 crdt ;¢ maxcfrl.r} rd

Finally, if r > 2 diam K , then for some x' ¢ K use polar coordinates

to get




XO(B(x,r)) s AO(B(x' , 2 diam K)) + AO(B(x',4r)- B(x', 2 diam K))
4r

< c((2 diaml()dm + J Otd-1 ds
. 2 diamK

s Cl‘dﬁ

< c maxc{r],r} rd

A‘lsd. A(ezr) < B(x',r') for x' e K and r' = diam K+e,r , so
d
if e, s % » then r' < %r » and |[B(x,r) -A(ezr)‘l 2 a(d)(n -(%) )r'd R

SO

XO(B(x,r) -A(ezr)) 2 c max':’{r-],r'}rd . B

The Euler Equation for Capacitary Extremals and a Wirtinger Inequality

The CH-capacitar_y extremal for E c Q satisfies a degenerate dif-
ferential equation. This can be used to develop an ir;teresting sufficient
condition for a special case of inequality (2.2.46). This is motivated
by a paper of Meyers [MY1].

If (u,%u) ¢ w(‘,'p(n) and u 1is a finite positive Borel measure,
then it is said that (u,Vu) satisfies -div(v IVUIP'Z Vu) = u weakly
if I V6« Vu IVulp'2 dv = I ¢ du for all ¢ ¢ CZ(Q) . The convention
0w =0 s used for |vu|P 2wy if 1<sp<2.

2.2.71 Proposition. Assume 1 < p <o and inequality (2.2.42 ) holds.

with p=q. If Eca, E compact, and 0 < C (E) <= for
H= C;(n) » then there exists a finfte positive Borel measure u supported
on 3E such that u(Q) = CH(E) and u(F) = 0 if CH(F) =0 and F is
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Borel measurable. Also,

)T/P

o aul s ([ 1vo” &+ [ lolP &
for all o ¢ C°(Q) and ¢ = cf""”’"(s) max{dist™ (E,aq) , 1} , and
-div(v IVulp'z u) = u weakly

if (u,%u) 1is the capacitary extremal of E .

Remarks. A weaker notion of Sobolev space can be developed which
admits much of Proposition 2.2.71 without assuming the Poincaré in-
equality (2.2.42).

The dependence of ¢ on dist(E,3Q) can be removed in the non-
weighted case if an alternate capacity is used.

Using Lagrange multiplier techniques it can be shown that Cg
capacitary extremals of compact sets satisfy a simi1a§- differential

equation.

Proof. Let (u,Vu) be the capacitary extremal of E which exists
by (2.2.33) and (2.2.34), and let F(t.c) = I [7u +talp dv for
teR and ¢ ¢ C;(n) . By the mean value theorem if x,y ¢ R" ,
then

P_iyIP -
lx*t_y% IXI = p lx+t*ylp 2(x+t*y) .y

for some t" between 0 ,t , where the convention 0 .= = 0 is used
for |:(~H:"y|p"2 (x#t*y) 1f 1 <p<c2 and x+t"y =0 . It is clear
then that

-121-




P P -

v almost everywhere, the difference quotient being dominated by
p(|vu| +t |‘7a|)p°1 |9%6] . which is seen to be in Lp(v,fz) by using
Holder's inequality and recalling that |Vo| has compact support and

v Is locally finite. From the dominated convergence theorem it now

follows that

(2.2.72) £l = 1 fﬁ!ga)é-fio,o)

,t=0 t+0
= pJ (Vu(p°2 Vu.% dv .

2.2.73. If u+to 2 1 quasieverywhere on E , then by Proposition
2.2.30 it follows that

F(0,0) j 19ul® dv
- G, (E)
sI |vu+tvo|P dv
= F(t.o) .

If ¢20 and t >0, then u+toc > 1 quasieverywhere on E and

(2.2.74) 0s %%l o = p I lep"2 Vu Vo dv .
t=

Let T(c) = I |W!p°2 TueTc dv for o ¢ C‘;(Q) . By Holder's inequality
it follows that |T(g)] s cgp")/P(E)([ [9(P &v)'/P , so that T isa
distribution. From (2.2.74) it follows that T 1{s positive, and so T




) = 1im I |Vul”"2 Vu9, dv
N

is a locally finite positive Borel measure u on Q , that is,
I |'~7u|p'2 Tus+Vo dv = I o du and so -div(v qulp'ZVu) =y weakly.
If the support of o < 0-E , then forany t ¢ R , utts 2 1 quasi-
everywhere on E and so T(o) =0 by (2.2.72) and 2.2.73, but then
u is supported in B and so is finite since B is compact.

If Kgq 1s compact and CH(K) = 0 , then choose ¢, € CB(Q) such
that ¢ 21 on K and J |v¢n|pd\:~»0 o

w5 o, &
= [lw P-2 gy “ V9, dv
g (I lep dv)(P-J)/P(I |V¢n|p d\’)T/I)

+0..

If FcqQ 1{s Borel measurable and CH(F) = 0 , use the regularity

" compact such that u(l(n) + u(F) .

CH(Kn) < CH(F) 20 so u(Kn) = 0 as above, and therefore u(F) =0 .

of u to choose K eF, K

Choose ¢ e C‘;(n) such that ¢ -+ u fin N:)’p(n) . As in the
proof of Proposition 2.2.7, the °n can be chosen to be uniformly
bounded and by (2.2.23) they can be chosen to converge pointwise quasi-

everywhere to u . Therefore

Iudu-mf%du

. I lou]® av = c (E) .
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If E 1is compact, then since u = 1 quasieverywhere on E
and u is supported on E , it follows that u(R) = u(E) =
j udy = CH(E) . Otherwise use Proposition 2.2.15 to choose Kn cE

such that Kn S-Kn+1 and CH(Kn) - CH(E) . If u_ 1is the capacitary

n
extremal for Kn and v, the associated measure, then an application

of Clarkson's inequalities as in the proof of (2.2.30) implies that

the u, are Cauchy in w;’p(ﬂ) . By (2.2.32) there exists a u e

“;.p(n) » U quasicontinuous and a subsequence {"i} such that
u, + 4 in N;’p(n) and pointwise quasieverywhere. CH(E) =
i
Tim CH(Kn) s CH(L;Kn) s-CH(E) = I [Vulp dv and u =1 quasieverywhere

Moo -
on Y Kn » Since Kn cKipp 50 U is a capacitary extremal for {J K

n
but u is as well, for similar reasons so u =u 1in w;’p(n) by
(2.2.34), and so u, +u . Choose g e C;(n) with 6 =1 on E

so0 that

Cy(E) = lim Cy(K ) = Timy (K)

= Ti{m I o dun

| L naed

-2
= 1im I lvu |P7¢ ou_«vo
e n n

= J IVulp"2 Vu-Yo dv

SELEGR

To complete the proof that u is supported in 23E consider

1,p _
h as in 2.2.5 so that (h_, ;(u) »x( ) Vu) ¢ Wp'T(R) . It s

-

clear that this is quasicontinuous by inspection of the proof of 2.2.5.

st ol




Also h_ ](u) = 1 quasieverywhere on E , so
P
C“Hsj[nwnvﬂ dv
< J lou]® av = c (E) .

therefore Vu =0, v almost everywhere on {u2l} . Since u may be

chosen to be one everywhere on E by (2.2.33), it is seen that Vu = 0
v almost everywhere on E .
Choose o, « C;(n) » n=0,1,2,... suchthat O0sgo <1,
g = 1 on g, op(x) = gg(x) for x e q-interior E and
1im °n(x) =0 for x ¢ interior E .
N
u(3€) = 1im f g, du
e

= 1im J IVu|p°2 Vu« Vg, dv
Ne

= 1im I IVulp'z Vu Vg, dv since w=0,
e v almost every-
where on interior

of E

= ] o du = p(E) .

Finally, given o ¢ C(Q) , choose ¢ such that ¢ ¢ d;(n) R
0Osédsl,and 6=1 on E.

[ o ul =1 o0 au

= |I IVulp'z Yu * V(o) dv|
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< ([ 1 &)™ (] sol®e® s 1901?10l )

0
< max(1, sup|ve|} c{P1)/P(g) ([ (1917 +1o1”) &) P

and a Cz(n) smoothing of 1 - Jitifétag along with a limiting

process gives the necessary constant. B

2.2.75 Proposition. Assume (2.2.42) forsome qz2p21, A =as=

v, A(@) =1. If T is a linear functional on C (Q) n N"p(n)
such that |To| s ¢, (I [P dv +[ 161 &)V and T(1) =1, then

([ 1o -T2 )% < ¢, ([ 170l )P .
Proof. If ¢ ¢ C(Q) , then

([ 1o-T@1 895 ([ 1o-[ 0 vl a1/
+ (I | T(o -I ¢ dv)lq dv)llq

<ec (I 1v61P av)'/P + |T(¢-f b v

since v(Q) =1

<c (f [P av)/P

ol (melP + o= [ o) )P
$c (I [ve[P d\:)”p . §

2,2.76 Proposition. Assume 1 <p<w, A=w=v, A(Q) =1, in-
equality (2.2.46) holds for q = r , and inequality (2.2.42) holds for
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q=p. If Ecn, E compact and 0<CH(E) <® | then
([ |¢-I ¢ dul” dv)]/r s ¢ (J lvo|P d\’)"/p

for all ¢ ¢ C(R) , where u 1is the measure associated with € as in
Proposition 2.2.71 and ¢y = c(1 + max{dist°1(E.an) » 1} C';‘Vp(E)) .
Consequently if ¢ ¢ C”(SZ) and ¢ =0 on E , then

(I lo1® &)'/9 s ¢, (I ve|P av)'/P .

Proof. Let T(¢) = C?(E) f ¢ du and use Propositions 2.2.71 and
2.2.75. n

Boundary Values for wa'p Functions
The following proposition is a generalization to weighted spaces

of a result.of Bagby [BG].

2.2.77 Proposition. Suppose Q' ¢ R’ s open and bounded, Q' c @,

and
(2.2.78) I 1ol s c I 196]° &

for all ¢ c‘;(a) .
If (u,vu) € ué"’(n) » U is quasicontinuous and u = 0 quasievery-

where in Q-Q' , then
LY TN
(“ ’X{U’O} VU)lg‘ € NO (a )

and 1s quasicontinuous with respect to ' . If in addition qu =10,

v almost everywhere on (u =0} , then
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(u.Vu)In. e u;"’(sz-) .

Proof. At first it is assumed that |u| < M <e . Inequality (2.2.78) ‘ !

implies as in Proposition 2.2.41 that w(E) s ¢ CH(E) for Borel sets
EcQ and H = C;(Q) » SO a Borel set of zero capacity always has zero

® measure.

2.2.79. It is clear then that u may be altered on a set of CH

T

capacity zero so that u = 0 everywhere on Q-Q' . By Definition 2.2.20

u 1s still quasicontinuous and there exist En € C‘S(Q) such that
$n +u in wé’p(n) and pointwise quasieverywhere. As in the proof of
2.2.7 the §_  can be chosen so that (8] <M.

2.2.80. By 2.2.5 and 2.2.4 there exist f e C’(R) with 0s f(x) s

+
X and a subsequence n

n Such that if ¢ = fm(¢nm) » then (¢m.v¢m) -+

‘"+’x{u>0} Yu) in H‘o’p(n) . Since $n + u quasieverywhere, it fol-
m

lows from 2.2.4 that ¢ * u+ quasieverywhere.

2.2.81. Therefore (u+ ’X{u>0}) is quasicontinuous (with respect to

8). The %n will be used to construct a sequence {un} in N&"’(n)

such that u, s 0 on Q' -¢,
+ 1,p

("n .-VUn) + (u ' X {y>0} W) in W, (R) . Using this it will be shown

» where c ¢ Q' is compact, and

+ 1P (g
1 Choose a bounded open set Q" ¢ RY such that &' c o and f* cn .

In addition choose o ¢ C'a(n) such that 0 sp<1 and p=1 on Q" .




2.2.82. Given € >0, pick m s.t. lo,-u ﬁ] o <€ for all
£ 44

n2m, and choose N, N' open such that a0' =N NN, N eq* .,

and

(2.2.83) L lvulP dv <€ -
*a{u>0}

This can be done since u = 0 on R-Q' andso in particular on ' .

2.2.84. Choose a>0 such that n“"“l.zm =q ”"“1.2;9 < e , and choose
o€ CO(N ) such that o = 1 on N. The ¢, converge v almost
everywhere to u since v is absolutely continuous with respect to
» So arguing as in the proof of 2.2.7 it follows that c¢n - ou in
'p(N ) and so by 2.2.13 if H' = CB(N') , then for some subsequence
{n} > the °¢n1 converge uniformly off open sets of arbitrarily small
Cye
quas icontinuous with respect to @ » it follows that C () = 0 for

capacity. Let E={xeN: ¢, (x)+u (x)} . Since ot s

= Co(n) and (2.2.35) implies that C,, (E) =0 . Since E is con-
tained in open subsets of N' with arbitrarily small CH' capacity,
it follows that the o¢ converge uniformly to ou of f open subsets
of N' of arbitrari‘ly s:nan CH, -capacity. Let G be an open subset
of N' such that CH Pg) < e and lad 1-ou * scl in N' -G for
121 . On 3, u =0 and p=o=1,50 ¢n-ap5~g'2- on 30 -6,
in which case ¢n -ap < 0 on an open set Hn with 3Q -G sH“i .

Let W be a capacitary extremal for G relative to CO(N') as in

(2.2.33) such that




+
2.2.82. Given € >0, pick m s.t. I¢n-u nhp;fz <e¢ for all
nam, and choose N, N' open such that 3Q' <N, NN , N cq",

and

(2.2.83) L lvulP dv < .
'n{u>0}

This can be done since u=0 on Q-Q' and so in particular on 3Q' .

2.2.84. Choose a>0 such that ““"“1,2;9 = q [loﬂ.l’z;Q < e , and choose
ce¢ C;(N') such that ¢ =1 on N . The ¢, converge v almost
everywhere to u+ since v 1is absolutely continuous with respect to

® SO arguing as in the proof of 2.2.7 it follows that °¢n -+ au+ in
HA’D(N') and so by 2.2.19 if H' = C;(N') » then for some subsequence
{ns} , the c:ds“1 converge uniformly off open sets of arbitrarily small
Cyo
quasicontinuous with respect to Q , it follows that CH(E) =0 for

capacity. Let E = {xeN': ¢n1(x) - u+(x)} . “Since u’ s

H = Cy(a) and (2.2.35) implies that C,,(E) =0 . Since E is con-
tained in open subsets of N' with arbitrarily small CH' capacity,
it follows that the o¢ ny converge uniformly to ou+ .off open subsets
of N' of arbitrarily small C

H
of N' such that C‘{D(G) <e and |od

, ~capacity. Let G be an open subset
+ a '
ni-aulszinN G for
121 . On an,u+-o and p=o0=1,5s ¢ -ups-% on q-G,
a ni
in which case ¢n ~ap < 0 on an open set Hn with an-Gan
i

i
Let W be a capacitary extremal for G relative to CO(N') as in
(2.2.33) such that '
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(2.2.85) 0sWs1, W=1 on G, and f |7|P v = c(6) < €P.

©

Let V= (¢n -ap)(1-W) , where i 2 ia and n,zm so Vs0
i .
on H uG and VeWp'P(R) by 2.2.9. Using (2.2.78), 2.2.82,
i
(2.2.83), 2.2.84, and (2.2.85) it follows that

+
Iv"u I],D;Q s ﬂ¢ni 'ul]’p;g + "apl]’p;g + "(¢"1 -Gp)w|1,p;9
s 2 + (c+1)V/P (I |v[(q>mi ~ap)WI|P )P _

1/p
a2+ ' (1 pre—) mi® o)

+ ()P (]N, 19, 1° dv)'/P

1/p €
2+ +1 M+
s[ (c+1) ( mr;—)]e

+ (e)? [(]

N n{u>

ha-rtoy ey

0}
1/p
f (I |V¢n1 " X{u>0} vul? &) ]

1/p €
(2 + (ct1) 2+M + Ne .
< c [ '—I-——p 2 €

Since ¢ 1s arbitrary and Q' -(Hn uG) 1s a compact subset of gq'
i
(' ¢ H, u G) , 1t is clear that there exist u, e H(])'p(n) such
i
that u, is bounded, up * u+ in H;'p(n) » and u, S 0 on
Q! -c, for some compact subset Cn of q'.
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Let fn be as in 2.2.80 so that for some subsequence {nm} .

(fm(unm) ,f&(unm) VUnm) + (' ,x{u>0)Vu) in N;’p(n) . It is claimed

' V3P (1
that (fm(unm) ,fm(unm) vu € No (R') so it follows that

)

nm Ign

(u+ *X{us0) Vu)ln' € NA’p(Q') . The same procedure applied to -u

shows that (-(-u) s X{u<0} Vu)l € wé'p(n') so that addition gives
Q' o

(u » X{y=0} Vu)lg' € WA’p(n') - To prove the claim choose n_ e Co(n')

such that g = 1 on C, - By 2.2.9

(ny (4 e WP ,

m mn

» f!
RRRACRL LR AT

)Vunm)‘

m Q'

but fm(x) =0 if xs0, so fm(unm) =0 on Q' -cnm and also

f"n(un =0 on Q'-¢ for the same reason, so this, combined with
m T

the fact that Ny = 1 and Vnm =0 on Cp » implies that
m

1,p
(f(u ), f'(u. ) Vu ) e W."T(R') , as claimed.
m N, mnet Ny |n. 0
Considering 2.2.81 and (2.2.35) it is clear that (u ’x{u=0})|
nl

is quasicontinuous with respect to Q' . If u is unbounded, then
= 1'p
let f =h) \ asin2.2.5s0 that (fy(u) PX([u| <N} vu) € Wyt (Q)
and is quasicontinuous because of 2.2.4 and 2.2.5. Also 'fN(u) is
bounded and zero quasieverywhere in Q-Q' so that the work above

T14Prat
implies that (fy(u) » X{|u] <N,u=0} VU)ln. ¢ Wy'"(@') , and so

(u » X{yx0} VU)IQ' € N;'P(n‘) since I |fN(u) -u|P do =




|ul® do+0 as N+« and

L|u|zN}

P P
Ju - Yu dv = I Ju dv 0 s N .
I 'x{lu|<n , ux0} X{ue0y VUl |u[zNI | +0 a - e

Since (fN(u) ' X{ ] u] <N} VU)lQ. is also quasicontinuous with respect
to Q@' and fN(u) + u everywhere, it follows from (2.2.32) that

(u » X{uz0} Yu) is quasicontinuous with respect to Q' . B

Weak Boundary Values

P

If f:30 + IR 1is continuous, u e w"p(n) and X € 3¢t , then

it is said that u(x) s 2 weakly if for every k > £ there exist

an r >0 such that (n(u-k)+ s X {y>k} Vu-+(u-k)+vh) € NA’p(a‘)

for all neCZ(B(x,r)). In addition u(x) 2 £ weakly if -u{(x) < -2 weakly
and u(x) = £ weakly if both u(x) < £ weakly and u(x) > 2 weakly.
Proposition 2.2.86 shows that under certain conditions this definition

of weak boundary values is virtually equivalent to a more conventional

definition.

2.2.86 Proposition. Suppose Q' 1is open and bounded, &' ¢ Q ,
TP H]’p(n') » fe H;’p(n) » f quasicontinuous in Q and continuous
in g-0', and either v s cw or u,f are bounded.

If (u'-fl , VU-Vf| ) € HA’D(Q') » then u(x) = f(x) weakly
rh Q' .

for all x ¢ 3" . Conversely if u(x) = f(x) weakly for all

X ¢ 30" , then (u ffln' R xf"’f](vu-Vflg')) € ﬁ;.P(gc) .

Remark. In the converse it is only necessary to assume that u(x) =

f(x) weakly quasieverywhere on 3Q' . This follows from an argument




similar to that in Proposition 2.2.77, where a capacitary extremal

is used to remove an open set of small capacity.

Proof. Assume (u-fl , VU-vf| ) € wg’p(n') . Choose ¢, ¢ d;(n‘)
Q' Q'

such that op * u-fl . in wg’p(n') . Consider the ¢n as functions
Q

in d;(n) » let v be a quasicontinuous limit of the n in Ng’p(n)

and Uu=v+f ,so u=f quasieverywhere on 9-Q' . If Yy € C;(Q)
such that Yo+ f in wg'p(n) » then (¢n+wn R V¢n+vwn) + (u,%) in
1,p - = - -

Wy (2) with Vu = Uv+9f so (¢n+wn|n' . V¢n+vwn'nl) - (0 ,Vu)!n'

in “1.9(91) . but (¢n+¢’nl ' . v¢n+vwn'n ) <> (u QVU) in w]'p(ﬂl)
) "

also, so

"u=u, @ almost everywhere, and

(2.2.87) -
Vw=vw , v almost everywnere.

Given Xg € ' , pick K so that f(xo) < K. Since f is
continuous in Q-Q' , there exists an r > 0 such that f(x) <K
in B(xr) n (2-0') , S0 1f n ¢ Cg(Bxgur)) . then n(i-K)" =
n(f-K)* = 0 quasieverywhere in Q-9' .

2.2.88. G-K « u};g(n) so that 2.2.5 implies that

(@K + xggopy T8 « W220)

and so0 2.2.9 implies that

N




(@K & X g T3+ (5-K) ") € Wy*Pla)

Following the proofs of 2.2.5 and 2.2.9, it is clear that (G-K)+
is locally quasicontinuous (2.2.20) and n(G-K)+ is quasicontinuous.

Proposition 2.2.77 now implies that
- ot - - ot 1.P/ne
(n(U'K) ’ nX{u>0} Vu+ (U-K) Vﬂ)ln' € wo (Q ) ’
but (2.2.87) then implies that
- + - + LP [
(n(u K) , T\X{u>o} Vu+ (u-K) Vﬂ)'g' € wo (')

since v is absolutely continuous to «w . This is true for all
K> f(xo) ) u(xo) 3 f(xo) weakly. In the same manner it is
shown that u(xo) 2 f(xo) weakly and so u(xo) = f(xo) weakly for
all Xg € n' .

Conversely if u(x) = f(x) weakly for all x e 3@ , then for
Xq € ' and e > 0, there exists an r > 0 such that
|f(x)'-f(xo)| <e for x eB(x;r) n(2-2') and n(u-f(xy) -e)" e
H&’p(m) for all n ¢ C; (B(xo.r)) . From the first inequality it
follows that -f(x) +f(xg) -e <0 on B(xyr) a (2-0') so
n(-f-*f(xo) -e)* =0 on a-a' for ne C;(B(xo.r)) . As in
2.2.88, 1t follows that n(-f +f(x,) -e)+|a. e WP(at) . am' is
compact since Q' 1{s bounded so a covering of balls such as
B(xo.r/Z) can be reduced to a finite subcover B(x;,r,/2) ,
1f=1,...,n, such that n(u -f(xi) -e)+ and n(-f-+f(xi) -e)+
are in W3P(@') for n e C(BIxry)) . Plck ny . 1=1,...0,

such that ny € ﬁ;(B(xi,ri)) and ny = 1 on B(xi.rilz) » and !




3 ”

n
Ng ¢ C;(n') such that ng = 1 on Q' - Hl B(x1 .r1/2) » in which

case nglu-f-2¢)" ¢ Wy*P(a) by 2.2.9. Miso, (u-f-2¢)* s
(u - f(x,) -e)t 4 (-f+f(x1)’-e)+ , 50 if ¢ = (u-f-2¢)" , then

05 ¢ sn(u-f(x;)-e)" + n (-Fof(x,)-¢)" .
in B(xi,riIZ) » i=1,...,n, and

0<s¢ < no(u-f-Ze)+

n
in Q' - 1Ul B(xi.ri/Z) . Let ¢ = no(u-f-ze)"' +
n + +
21.] [ng(u-f(x;)-e)” + ni(-f+f(x;)-€) ], 0sé <y on Q' and
Ve H;’p(n') X w};g(rz) s SO ¢|n. € w”"(n-) sipce @ s
compact. Pick 9y, € c*(a') o w""(sz') and ¥ e C;(n') such that

o, + ¢ in w"p(n') and y >y in Ng’p(n') . Letting f(x) =
nl

x' and using 2.2.4 and 2.2.5, it follows that there exist f eC"(R),
m=1,2,..., and a subsequence nn Such that {fm(qsnm) -fm(¢nm-¢nm)}
1P + +
converges in W 'F(R') to ¢\ '-(o‘ -p) = ¢‘ with gradient
n nl ]
(Xgg>0} " = X(goyy (76~ | ™ (egoy W], stnce 09| s

fm“nm) -fm(«tnm-wnm) = 0 when "’"m =0, and so is in c';(n') ,
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therefore ((u-f-2)* , x(, ¢ 2e50) BT Wy'P(2') . By the
dominated convergence theorem this converges in H“p(n ) to
((u-f)* , X{u>f) (Vu- Vf))l . Doing the above for -u , -f instead
of u,f shows that (- (f-u) s X{y<f) (Yu- Vf))l € w;'p(sz') so

that (u-f , X(,.¢) (Vu-Vf))I € wl P@a). o
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2,3.0 Higher Integrability from Reverse Holder Inequalities

It will be shown that functions satisfying a maximal
function inequality, where lower powers of the function
dominate higher powers, actually lie in higher LP classes
than initially assumed. This is applied in Chapter 3 to
prove higher integrability for the gradient of solutions of
degenerate elliptic systems.

Theorem 2.3.13 is a generalization of (S1] to weighted
spaces, which in turn is an adaptation of a result of
F.W. Gehring (GH] to a setting more natural for the analysis
of differential equations. The first adaption of [GH] seems
to be by M. Giaquinta and G. Modica [GM] although the slightly
more general [S1] was done independently, see [GI] for further
references.

Only measures which are doubling will be considered
here and only very restricted geometries since these are
sufficient for applications in Chapter 3. 1In [S2] Theorem
2.3.13 was proved for very general measures with the restriction
that the density of the measure must be uniformly bounded away
from zero near the boundary of the domain being considered.
This restriction may be weakened even further to the assumption
that the measure is doubling near the boundary.

Let 1 be an open set in ltd and w a positive Borel measure.

It will be assumed that w is doubling, that is, there exists a

constant ¢; > 0 such that

0 < w(B(x,r)) < Cw B(x,r/2)
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for all balls B(x,r) € Q. By iterating this inequality |

it is easily seen that there exists a constant g8 > 0

such that

(2.3.1)  w(Bx,R) < ;P uB(x,n)

for all x,r,R, 0 < r < R, B(x,r) C Q.

Let Q, € Q; € Qy € @ be open concentric cubes with
sides parallel to the coordinate axes and with side lengths

s 2s,, 3s_, respectively. Also for ease in applying the

o?
doubling condition it will be assumed that Qy lies at least

a distance of 15 /d S_ from 3Q .

L? norms on Q  will be estimated in terms of L9 norms !
on Q, for some p > q. To accomplish this a continuous "itertion"
will be carried out on a parameterized collection of cubes
Qt’ 1<t < =, where Qt is a cube concentric to Q_ with sides
parallel to Q and side length S(t) = S_ (1+t'q/8).
The choice of parameterization is related to the
following estimate which can be used to show that a ball centered
in some Qs actually lies totally in Qt for some specific t<s,
if its measure is small enough.
Given B(x,r) C Q, there exists an 1 > 0 such that
r< T<3 S and Qp SB(s,r). Using (2.3.1) it now follows
that i
w(Qg) < wB(x,F) <¢; P w(Bx,1))

.80 that
(2.3.2)  r® <c;(3 5 /MMBuB(x,r))/u(gy)
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for all B(x,r) € Qo.
The maximal functions to be dealt with are defined as

follows for 0 < R < =,

MRf(x) = sup{w'l(B) J |£f] dw:B=B(x,r)c @, 0<r <R}

For convenience let Mf = M_f. The super-level sets of functioms
g,f will be of central importance in the main estimate for
theorem 2.3.3. These are denoted by E*(t) = {x € Qp: 8 > t},
E(t) = E'(t) N Q and Ea(t) = E' () n Q.. F (t), F(t), Falt)

are defined analogously with respect to f.

2.3.3. Theoren. Suppose g,f are nonnegative Borel measurable

functions defined on Qj, 0 < a <1, b > 1 and

(2.3.4) M (gD < b Mi(g) + M(£Y) + aM(gY) a.e. in Q,

then there exists a constant Po such that if Pp>P2a then

HJJ)[Hkylghqﬂpi{&%aibwpm+{&qlthuﬂ
- 0 0

where c depends only on d,p,q,a,B,cl,b,R/Su, and Py depends only
on d,q,a,cl,b,R/Su.

Proof. (2.3.5) will first be proved under the assumption that

(2.3.6) Mp(g) < b M(g+f) + aM(gV) a.e. inQ,

PRy P SR R TR N



Then either f ¢ Lp(m,Qo) in which case 2.3.4 is true or

fe Lp(m,Qo), in which case from propositions 1.1,3, 1.1.4,
1.1.5 and 1.1.9 it follows that M(MY/2(£%)) > M/9(£9) ace..
(2.3.4) then implies that(2.3.6) holds for £ replaced by M}/9(£%)
and (2.3.5) follows form propositions 1.1.3 and 1.1.4 and (2.3.5)
with f altered as above.

Let
(2.3.7) & = Min {§f U (1-k9/8)F - w(0.)

o 2 38gB/%¢ 2 308d372c1 wl(Qy)

1}
15
where Cg is the constant appearing in 2.3.11 (depends only on
cy-d) and k% = 3%(c, b(1+a)/(1-a)) > 1. The doubling condition
implies that w(QQ)/m(QO) is bounded below by a positive number
depending only on cl,d so that & is bounded below by a positive
constant depending only on d,cl,a,B,R/SQ.

Normalize g and f by dividing by

sl | g4V @y [ Paw /Py
Q Q
so that without loss of generality (replace g,f by these

normalized versions) we may assume that

2.3.8) Qg [ %+ w iy [ fPant/? « s
Q% Q

The remainder of the proof will consist of four parts.
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Part I (Decomposition)

Fix s>k and let t = s/k. From 2.3.7 it follows that

oM [ s% < 57 " wlqy) | g%
Qs Q

«Q,)
< —%tggy 84 <1< sq .

Divide Qs dyadically a minimum number of times so that the

subcubes nave diameters less than Min{R,S_}. For each such Q

. 0(Q,)
ml 840 < 515 * agy) ngd“‘i%

sd

where c, depends only on Min{R,S_}/S d, ¢;. Now subdivide

each subcube as in the decomposition lemma of Calderon and

Zygmund [ST] to get disjoint subcubes {Pi} of Q; such that

g<s a.e. in Qs\(ﬂ Pi) and
i
(2.3.9)

A

Sq N%—i)- [ quw 1C4 Sq
Py

for some 4 depending only on d, Cys Cg3- The Calderon-Zygmund
lemma easily generalizes to the case of a doubling measure

because of propositions 1.1.3, 1.1.4, 1.1.5 and 1.1.9. The

initial subdivision guarantees that diam P, < Min{R,S,}.

Let G = U Pi s0
i

(2.3.10) I quw <<y s9,(G)
G




Given x € P, consider B(x,r) with r = diam P; < Min{R,S_}

so that

(2.3.11) s < H%D-ll qumi%(g—?—) ﬁg)-i quw‘]'

where c; depends only on cl,d .

Part II (Removal of the term a M(gq))

Let F = {x € G: (2.36) hold } so w(F) = w(G). If a =0
continue from 2,3,12 otherwise 2.3.11 implies that
C;If.sq C;1 <MR(8q) (x) < Mg (x) for all x € G. Given x € F
there exists a ball B = B(x,r) € Q0 such that (1+m)2"1 cgl

< (1»«»)2'1 M(gd) (x) < m‘I(B) Ingdw since (1+m)2‘1 <1,

From this it follows that

w®) < 2 c5(1+a.)'1 I qum <2 cs(lm)'l w(Qo)Gq
Q

- (2,3.2) and (2.3.7) now imply that r < R and so
MgV (x) < 2(1+a)"! w1 (B) l gq&u < 2(1+a)'1MR(gq) (x)

Combining this with (2.3.6) gives

(2.3.12) Mg () < (oM (g+e) (x)

for all x € F,.




Part 1I1 (Basic Estimate)

Given x € F use (2.3.11), s = kt and the above to get
39 (cgb(1+a)/(1-a))t? = s < (cgb(1+a)/ (1-a)) MI(g+£) (X)

so there exists a ball B = B(x,r) C Qo such that

(2.3.13) 3t < 3%57 I (g+£)dw

It will now be shown that B C Qt‘ To see this it is sufficient
to show that T < (S(t) - S(s))/2 = St /B(1-x"¥/8)/2. 1n
addition r < S_/10 will be proved for later use. The definition

of B.(t) implies that L gdw < tw(B) + I g dw.
BAE (1)

Using this, a similar inequality for f and (2.3.13) it follows
that

tw(B) < I gdw + fdw < tl-a ngdm+ t1°P I £Pduw
B NE*(t) BAE'(t) E*(t) F*(t)

and since t > 1 and p > q it is seen that

w(B) < c‘q(l qua + I £Paw) < 79 (s%+8P) w(Qy)

<2t 6% u(q .

This combined with (2.3.2) and (2.3.7) implies that
T < sat‘q/e(l-k'qls)/lo and so B € Qt‘ Since t > 1, k > 1 it
also follows that r < S_/10 so that B(x,S5r) C Qo. Using the

fact that B C Q, and arguing as above it follows that
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(2.3.14)  t w(B) < I gdu + I £du
BAE(t)  BNF(t)

F is covered by such balls B. Using the covering lemma 1.1.9
again it is seen that there exists a pairwise disjoint sub-
collection of balls {Bi}, B, = B(x;,r;) such that {B(x;,5r;)}
~is a cover for F. Now, since B(xi,Sri) c QO’ the doubling

condition implies that

w(G) = w(F) < I m(B(xi,Sri))

3
< z w(B(xi,ri))
and consequently

I qum < j gddw AN s%w(G)
E(s) G
<k ci s sq"1 j gdw + fdw]
E(s/k) F(s/k)

from (2.3.10) and (2.3.14).

Part IV (Reduction to Stieltjes integral form)

Let h(s) = I g dw, H(s) = I f dw , so h is non-

E(s) F(s)
increasing and right continuous, and Lim h(t) = 0 since
_ v t+0
td 1h(t) < ] quw*()as t + 0, Integrate by parts to get
E(t)
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(2.3.15) - I £4°1 an(e)

(s,»)
= (qa-1) t3°2 h(e)at + 3 In(s)
(sy=)
= (q-1) I £a-2 g dw dt + sa-1 h(s)
(s,=) E(t)
(2.3.16) < (q-1) g t9°2 dt du + 537 In(s)
E(s) (s,g)
(2.3.17) = I g%dw
E(s)
< kel e, s I g du + J £ du) .
E(s/k) F(s/k)
So

- ] t37lan(t) < k cie, sV (h(s/K) + H(s/K)) for s > k.
(s,=)
Apply lemma 2.3.18 to get

- ] tP~lan(e)
k,=)
< c( - j t3 lan(e) + j tP~2 H(t/x)dt+ h(1)).
(k,») (k,»)

Inéquality (2.3.16) is reversed if E,(s) replaces E(s),
8o with s = k use (2.3.15) to (2.3.17) (with p replacing q)

and the ineguality above to get

I gPdw < c( [ gldu + I tP-2 [ £ dwdt + h(1)).
Eq (k) E(k) (k,=) F(t/k)
gP < xP79 g% for g < k so
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¢ (kf
L@gpdm < c(1+kP7Y j gldu + ¢ j £ l tP-2 4y

Q Q
thgdm
E(1)
<c5qm(Q)+ckP1]fpdm+cqudm
’ Qq E(1)

< ¢ w(Q,)

¢ independent of w(Q,). Reversing the normalization of f,g

gives (2.3.5).

2.3.18 Lemma. Suppose h:[1,=) + [0,=) is nonincreasing, right

continuous, and Lim h(t) = 0. Also suppose H:[1l,®) + [0,») is
T+

measurable, q>1, a>1, k>1 and p satisfies 1>~akp-1(p-q)/(p-1)

with p > q. If

- [ s91ancs) < a tTLh(t/K) + H(t/K)) for t > K
(t,=)
then

[ P~ an(s)

(X, =) )
< eq(- ] s4°1 gn(sy + c, I tP"2 H(t/K)dt + cs h(1) f

(k,=) (k,=)
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sp']dh(s) . An integration by parts gives

J
Proof. let IV =
=2 T J(k il

(2.3.19) ¥ P9 3 Tgn(e) = kP9 1J + (pq)a ,
! ](m] (t) 1+ (p-a)

here J = P91 9= 4n(s)) dt .
Here LM, J(t.d]s (=)

Combining this with the hypothesis it follows that

(2.3.20) Js [k )t"'q”(atq"[h( %) +H( %)] + J 97 dn(s) at,

(jt"
but
I tP2n(E)at = kP! J P2 n(t) dt
(keJ) (1,3/k)
kP! i © op1
. n(l) - n(1) - P an(t
(b nedh - nny f“'m] (t)
kP! p-1 P-q g-1
(- t" " dh(t) - t'  dh(t))
T f(l.J] i"—T J(j.«») (
since

p-1 -1 p-1
(L wd - (%)p () -n(an + (D h(4)

p-q
- 1 dh(e) - 3 97 dn(t) .
: I(J/k.n I"_‘TJU.»)
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e, - i adonene i s —— - e

This combined with (2.3.19) and (2.3.20) gives

J _ P93, p=q, P . p-1
< kP9l + B8Pl j(l 7 e

+ (B3 a- 11370 (- [( )t“" dn(t))

¢4-1 dh(t) + (p-q)a J‘ ) tp-z H( -:-) dt.

J s »J

- kp'q J

Now use that [a(p-q)/(p-1) - 1] < 0 . Subtract part of the second term
from both sides and let j + = to get
S P=yarP Ty 1 L PR (o I -2, t
(=g I s K0 I+ (p-a)a (ko t 0 H( ) dt

=9 P 1(. 21 an(e))
+ B9 aP Y [M], (t)

but (1 -(p-q)/(p-l))akp'1) > 0 by hypothesis, and
tP-1 dh(t) < kP h(1) , so the desired conclusion is reached. B

) In.n




CHAPTER 3

The theme of Chapter 3 is that of establishing continuity for
solutions of degenerate elliptic equations.

In Section 3.1.0 both interior and boundary continuity are con-
sidered for single equations of the form div A(x,u,%u) = B(x,u,%) ,
where A, B satisfy certain natural growth conditions. As a byproduct
of this a Harnack inequality is proven for positive solutions.

In Section 3.2.0 estimates are derived for the modulus of conti-
nuity of functions in weighted Sobolev spaces, analogous to Morrey's
result that functions in H]’p(md) s P >d, are Hélder continuous.
This 1s relevant since solutions of equations with natural exponent
p (p=2 for linear equations) are often contained in such spaces.

In Section 3.3.0, degenerate elliptic systems are considered
of the form div A (x,u,%u) = B,(x,u,7u) , 1 =1 ,..:, N , where
A1 ’ B, satisfy certain growth conditions. Additional integrability .
is proven for |Vu] and this, combined with the results of Section 3.2.0,
establishes continuity in certain borderline cases where 3.2.0 does not‘
apply ‘directly.

In each section an example is worked using equations with de-
generacies of the form dist“(x,x) , for a class of sets K which
1nc1udes finite unions of c manifolds of co-dimension greater

than or equal to 2 (including co-dimension d, i.e. points).

-149-

L



3.1.0 A Harnack Inequality and Continuity of Weak Solutions for
Degenerate E1ligfic Equations

The main results of this section are a Harnack inequality for
positive solutions and the énterior and boundary continuity for weak
solutions. |

The basic structure of the proof of the Harnack inequality is due
to Moser [ME1]. Techniques of Trudinger [T1], [T2] are used to replace
the John-Nirenberg lemma [JN], which is not of use when the weights
are badly degenerate. The proof of the boundary continuity essen-
tially follows that of Gariepy and Ziemer [6Z].

Various results have been proven for linear degenerate equations
by Kruzkov (K], Murthy and Stampacchia [MS], P.D. Smith [SM]
and Trudinger.[T1),[T2) and a degenerate Harnack inequality
hes been proven by Edmunds and Peletier [EP] for quasi-linear
degenerate equations. The present results allo; a more
general class of degéneracies. The reader should note the
related work done independently by E.B. Fabes, D.S. Jerison,
C.E. Kenig, and R.P, Serapioni [FKS], [FJK] (see comments
preceding 2.2.40).

The equations considered are of the form

(3.1.17) div A(x,u,Vu) = B(x,u,%u) .,
where

A axR'x RS + RY
and

B: axR'x R + R!
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are Borel measurable functions satisfying the conditions

(3.1.2) [AGuw)] s ul) WP+ ay(x) [ulPT + a,(x)
[B(x.uam)| s by Mx)w|? + by (x)[w[P! + b,(x) [u[ P
+ b3(x) ’
A(X,u.w) ow'z A(x) |w]P - c](x)lulp - cz(x) .

ac®! dsopen, p>1, A, u, a0, 21,2, b ,1=1,2,3,"
4 o 1=1,2, are nonnegative Borel measurable functions on Q and
©= u x -(p-1) and ) are assumed to be integrable with 0 <\ sy <=
almost everywhere.

Identifying o and A with the measures they induce, w"p(m,x,n) R
u;’p(m,x,n) and w};ﬂ(m.x.n) will be the Sobolev spaces defined in
2.2.1. For convenience these will be represented by w}n) » w;’p(n) ,
and uloc(n)

There are a number of useful definitions of weak solution in the
. present setting. For simplicity a pair (u,Vu) ¢ H]'p(n) is called

a weak solution of (3.1.1) in an open set V if

(3.1.3) j 0 « A(x,usTu) + 0B(x,u,7u) = 0

for a1l (9,73) ¢ H;'p(V) . In more specific contexts definitions such
as that in [T1] may be more natural. In any case the basic methods are
quite flexible in adapting to different definitions of weak solution.
The following Sobolev inequalities will be assumed. B = B(xo.r)
s a ball of radius r, Bcn, and Xg » T vary depending on the ]

specific result being considered.
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(3.1.4) (ﬁj’sum O sty Llwlp A)llp

v ey [ 101® o)

for all (¢,Vd) ¢ Ng’p(B) ,» where q > p and
s(r) 2 2 (for computational simplicity);

(3.1.5) Js o - R%Y fa %l|P o s P p(r)IB 198P A+ q(r)u(B)

for all (9,V9) ¢ NI’p(B(xo.F)). and some r > r ;
)
@) [ 1olPE s e sg [ imeiPa e e spn [ jol

for all (6,78) € N;’p(B) and 0 <e s 1, where s,
is efther 0 or 1 and F. will be defined slightly
differently in each of Theorems 3.1.10, 3.1.15, and
Corollaries 3.1.12, 3.1.13.

The weights w, A for which (3.1.4) and (3.1.5) hold, with
t(r) =q(r) =0 and ¢ ¢ C;(B) and d;(B(xo,F)), respectively, are
characterized in Theorem 2.2.41. Simple 1imit procedures as done in
Lemma 3.1.7 then show that (3.1.4) and (3.1.5) hold for general Sobolev
functions.

If Fr < sF(r)n , then (3.1.6) is trivially true with s_ =0 ;

0
otherwise (3.1.6) can be deduced from inequalities such as (3.1.8),

for which the weights have been characterized in Theorem 2.2.41.




3.1.7 lemma. Assume for some s , 1 ss <p, that

(3.1.8) L |°|5pr s e(r)r’ L lesks/p SPs)/p

for a1l & ¢ CB(B) . Then
" (3.1.9) 'Lm" Fos er"[|vo|P A+ clp,s)es/(P-s) P/ (p-s) ) Jm% :
for all (9,76) ﬁg’p(B) . %

Proof. Given u ¢ C'O'(B) » let ¢ = up/s . V0= % u(p-s)/s Yu , so by ;
(3.]08)

s P
Ja iPF, s (5) <tn) "SL u]P~% jou|S 2a5/P yP-s)P
Use Younges' inequality to show that

s
(%)' e(r) rsjulp's IVu|s AS/P m(p-s)/p
< C(p,s) e 8/ (P-s)p/(p-sk [ulPo+ e v [mulP 2
so that (3.1.9) 1is true for u ¢ C;(B) . Given (y,W) € Hg’p(B) ,
pick ¢ « C'O'(B) such that (¢,.9¢,) + (v,%) fin H‘])’p(n) . Using

(3.1.9) with ¢ = ¢ -9, it is seen that {4} fis Cauchy in LP(F...B)

and since ¢"1 +y¢y a.e. for some subsequence {"1} it follows that

v LP(F.B) and ¢ +y fin LP(F.B) .

-153- .




Letting ¢ = ¢, in (3.1.9) and letting n + « shows that (3.1.9)

is true for (9.v9) = (y,y) » as required. ®

For Theorem 3.1.10 it will be assumed that a, = b, = c, = 0,

Fp ® RP[C] +b§’ yo(p-1) b, + a1::/(|a-1)u-p/(p-1) A1, BlxgR) e,

and (3.1.4), (3.1.5), and (3.1.6) hold for r =R .

3.1.10 Theorem. If u 1is a positive weak solution of (3.1.1) in

B(xo.R) with usM<ce and 0<6 <1, then

(3.1.11) sup u < C(R) inf- v
B(xo,GR) B(xo.eR)

o e(s(R) (s P(R) e (RF/P)
for C(R) = c[(s(R)+t(R) exp(p(R)H(R)+q(r)}]

. -1 -(p- -1
and HR) = 1 + & (B(xo.R))IB(xO’R)[(c‘+b1p A\ )+b2) RPH] RP ]

¢ dependingonlyon p, g, 6, M, bo .

The proofs of Theorem 3.1.10 and the following results will be

deferred until later.

Remarks .

The boundedness assumption for weak solutions is not essential if

; bo = 0 . In this case methods of Aronson and Serrin [AS] can be used

| to achieve similar results.

> As in [T3] the Harnack inequality may be split into two parts, one

relevant to subsolutions and one to supersolutions.




The John-Nirenberg Lemma [IN] generalizes easily to accommodate

doubling measures, that is, measures u such that u(B{x,2r)) s
cu(B(x,r)) . So if integration against w 1is a doubling measure and
1f the inequalities (3.1.4), (3.1.5), and (3.1.6) hold for 0 < r < R
with p(r) , q(r) , H(r) bounded, then the "crossover" can be done
as in [73].

The last remark applies to supersolution calculations as well,

but if full Solutions alone are of concern and if the remaining Sobolev
constants s(r) , t(r), sg(r) are bounded for 0 <r s R, then a
simple method due to Bombieri [BI] and appearing in [ME2] can be used
as well, to prove (3.1.11) with R replaced by r and C(r) bounded.
1f, as in the symmetric linear case, lw1 -A(x,u.wz)l <

|w1 -A(x.uuw1)||w2- A(x.u,wzl » then the derivation of the fundamental
inequality in the proof of Theorem 3.1.10 may be improved as in [ME2].
This leads to the replacement of w by the smaller wéight u , thus

allowing consideration of more degenerate weights.

Definition. If x ¢ Q and 1lim inf V= inf V , then it is said
r~0 B(x,r) L

that V achieves its essential minimum at x . The analogous definiiion

is adopted for essential maximum at x .

3.1.12 Corollary. Assume 0 = ay =3, " b2 = b3 = c:.I s c2 ’ Fr -
rpb'; Pl , O 1is open and connected and for all xeQ 3r>0

such that inequalities (3.1.4), (3.1.5), and (3.1.6) hold for Xg * X

and B{x,r) cn .




If V is a bounded weak solution of (3.1.1) in Q and V

achieves its essential minimum or maximum at an interior point, then

V 1{s constant (off a set of measure zero).

Remarks. If 3y 3, b2 ’ b3 » Cq» €, are not assumed to be
zero, then a weak maximum principle may be proven similar to that of
[As].

If C(R) in (3.1.11) depends on R in an appropriate manner,
then a Liouville theorem may be proven as in {ME1].

In Corollary 3.1.13 it is shown that a slightly altered Harnack
inequality holds if 3, b3 » €5 are not zero. The function K(r)
is usually chosen to be r* for some o« > 0 .

Let Fp = RP[c; +c, (KP(R) +b.f x(p-1) +b, +by k(PN (r)

+ (a1'+a2K'(p'])(R»p/(p'1) u-p/(p-]) A] and assume (3.1.4), (3.1.5),
and (3.1.6) for r =R .

3.1.13 Corollary. If u 1is a positive weak solution of (3.1.1)

in B(xo.R) with ugsM and 0<8 <1, then

(3.1.14) sup us<C(R) inf u+ (C(R)-1)K(R) ,
B(xo.eR) B(xo,e R)

where C(R) is as in Theorem 3.1.10.

For Theorem 3.1.15 let F_= rp[(c] M+-c2)K'P(r) + br v (e-1)

+ (byM+ b3)x’("'”(r) + (a, M+ az)p’("")x'p(r) w PP 0y and




assume (3.1.4), (3.1.5), and (3.1.6) for O <rsR.

3.1.15 Theorem. If u is a weak solution of (3.1.1) in B(xo,R) ’
with Ju] s W2 and C(R), K(R), © , M as in Corollary 3.1.13,

[ J
then m 0sc u=0 if [ C(r) == and }mC(r)K(r) =0,
o B(xgur,) k=0 koo

where rksekR .

If C(r,) 1s bounded and K(r) s c' r‘:'.for some c¢', a'>0,
then

Osc uscr: for some ¢, a>0 .
B(xo,rk)

These conditions are sharp in the sense of Lemma 3.1.16.

In addition, if C(r) 1is nondecreasing and K(r) 1is nonincreas-

ingas r+ 0, then

- . 9(r.)
use cg(rk)( Os¢c u+ CJO X

-1 ct
os o d Y
B("o'ﬁ'k) et Yog '(t)e t)

R ]
where g(s) - L E'(I?T 9‘-,'1 and v(s) = C(s) K(s/8) . ]

Remark. Semicontinuity results for subsolutions and supersolutions i

may be proven as in [T1] using the calculations mentioned in the

second remark after Theorem 3.1.10.
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Example
Let K be as in Theorem 2.2.56 such that 2.2.61-3

hold and w(x) = u(x) = A(x) = dist¥(x,K), a > - y.

From this and a limiting argument (as in Lemma 3.1.7) it
follows for some q>p and all B(xo,r) c Rd, that (3.1.4)
and (3.1.5) hold with s(r) =p(r) =1 and t(r) =q{r) =0 . For
simplicity assume that 315 355 Gy oy b] , b2 , b3 are
bounded by a constant multiple of « and choose k(r) =r + r(p-l)/p .
This implies that F_ s cw , so (3.1.6) is trivially true with
Sg * 0 and sF(r) =1. Also C(r) 1is bounded for r < R <= .
It now follows from Theorem 3.1.15 that if u is a bounded weak

solution of (3.1.1) in Q , then u 1{s locally Holder continuous.

3.1.16 Lemma. Let r, = 6“R for 0<0<1, R>0. Assume
(3.1.17) C(rk) :28>1,
and
(3.1.18) 0sc usa ]( Osc u+ 2Kk(r i)
- k-1
B(xgsry) Bxger 1
. C(rk) -1
for k=0,1,2,... , where a = CTF;T'?T' . Then
(3.1.19) n-1 ) n-1 (r) n-1
3.1.19 Oscu s{ T a, )Oscu+2 k(r 3, »
Blxgor ) k=0 */ By o K9 &y

and if




3.1.20 3
( ) kg

-1
c )= and C(r )K(r ) +0
0 (rk n r Ky

as k -+« , then

(3.1.21) dsc . u+0 as n-+w .
B(xo,rn)

(3.1.22) This is sharp because if (3.1.20)does not hold, then there

exists u such that Osc uzAiA>0.

B(xo.rn)
If C(rk) is bounded and K(rk) 3 crt for some ¢, a >0,
then
(3.1.23) Osc usc' ﬁ:. for some c', a' >0 .

B(xo.rn)
If C(rk) is nondecreasing as k + « , then this is sharp as
well,
If C(r) 1is nondecreasing and K(r) 1is nonincreasingas r +0 ,
then
-gr,) g(r,)

Osc use Osc u+2cl yog'1(t)e°t dt),
B(xo.rn) B(xo.R) 0

R 1 dr ' 21,7)
where g(s) = IS ORI v(s) = C(s)K(s/8) and c = (log'8 )

Proof of Theorem 3.1.10. The fundamental inequality (3.1.29) is

proven; then this is iterated to give (3.1.31). The final step is
the crossover from LP norms of u with p >0 to those with

p<0. This is accompiished by iterating norms of log u .
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It can be assumed without loss of generality that u is strictly
positive, oOtherwise let u=u+te , € >0 . u 1is a weak solution
of divA =B, where A(x,u,vu) = A(x,u-¢,u) and B(x,u,v0) =

B(x,u-c,Vu) , and since K ; B satisfy (3.1.2), the following

proof gives sup u s C(R) inf u . (3.1.11) is recovered by letting
B(x,,6R) B(x.,6R)
0 0

€e=+0.

Throughout the proof, ¢ will represent a constant depending
onlyon p, q, 6, M, bo » and will change from time to time.

tet o= o uP exp(by signd u) . B 20, ¢ CGBlxRY .
Several applications of Proposition 2.2.2 show that ¢ e Hé’p(B(xo,R))

with
vo = P! 76 exp(by signe u)
+ goP By exp(by sign8 u)
+ bo sign8 P B exp(b0 signf u)Vu ,
and so

] ¢p uB'1 exp(b0 sign8 u) vu- A

= - ¢p uB exp(b0 signg u)B
-p J ¢p°] uB exp(b0 sign8 u) vé - A
-bo signg f oP W’ exp(bo signg u) Vu+ A .

Now multiply by signB , use the structure inequalities (3.1.2) and
Uus M, and let E = exp(bo sign8 u) to get

RN
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(3.1.28) 8] [4»” £ [vu]P AE
s |8| I P PN b I oP & |9u)P aE

+ I o & ||~ byE + f P F1P-1 b,E

0 [ twol @ 19ulP T e p[ 6P (oel P g

- b, I o P vl aE + b I o f£tP-1 6 -

The second and the seventh terms on the right-hand side cancel.
This 1s in fact the reason for introducing exp(b0 signd@ u) in the
test function ¢ .

The following inequalities are proven using Young's inequality.

( P IVulp'] b, s e;(p',) et b.lp x’f"'”

+ ‘-L—)-;‘ € 81 jwe)® 2,

(3.1.25) { ~(oo1
3 e (p-1)
P (vol ® [wu|P Vs zp [va|P BP-1 P 5-(p=1)
L + "L,',D' e, ¢° H1 P, |
1
;
(3.1.26) PV 1wl 2y s % wol® wP AP ,

" (g;l) of au]:/(p-l) A ,

Applying these to (3.1.26) with ¢, = Br . Bl and ¢, = plEts,
and absorbing the gradient terms into the left-hand side it follows
that
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151 [ o joul® e

=(p-1
el(p )

s I8| Id»” B e+

I¢p JSP-1 b%) ,;(t:-l)E

+ I op u8+p" bZE + (eé(p"]) +]) J Iv¢|p U8+p-] Llp 1.(p-])E

+ I of fBFP-1 a%!/(p-l) u-p/(p-T) AE + b [ o B e

1

b.u b.M p
Considering that 1<e? <e0 and B~ [vulP = (5) IVUY/plp

for y = g+p-1#0, it follows for y # p-1, y # 0, that

RP f o (/PP < cc(Y)I RP {v8|P +oPFl Y,
where F, = Rp[c] +b§’ < (p-1) +b, ,,a]p/(p-l) u~P/(p-1) 2] and cly) =
(1+]8]P)° . '

Now use (3.1.6) with ¢ = ¢u7/p and ¢! = max{1 ,2cc(y)} .

The resulting gradient terms may be absorbed on the left to give
(3.1.27) RPW /PP < cc(y)f (™S sp(R) oP+ RP 199)|P) u¥a

(recall A\ <« ). Using inequality (3.1.4) with ¢ = ¢u7/p and
By * B(xo.R) » 1t follows that

. 1/ 1/
(;(;—R"LR 6% oY q/pw) QSC(J;—RTLR Guym) P ’
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with G = sP(R) C(y) (€™ sp(R) 4P + RP|va|P) + SP(R)RP |vp|P + tP(R) 4P .

3.1.28. This inequality is now iterated. To do this choose o, ,
1=0,1,2,3, suchthat §=6,<6 <8, <8 =1,andlet p;=
R, . Also Tet B, = B(x.r,), where r, = R(9+(8,-8.)27) .
Choose by € d;(Bk) such that 0 < ¢k <1, ok =1 on Bk+] and
lv¢k| 3 2“*2‘/[R(e]-ez)] » and let vy, = Yo(q/r)k . With these
choices of ¢ , y 1t follows that

(3.1.29) (I»'(lls_RT L S )

where

% 2k+2 P 2k+2 p VlYk‘

0

C(yk) and in turn C, (R} blow up if vy  tends to p-1 . If
Yo <0 » then this is impossible. If Yo > 0 » then y, must be

chosen carefully.

3.1.30. Given 1 205> 0 (to be determined in 3.1.38), pick o
such that 2ocygco and [g] = Iy - (p-0) > (&L - B) for

all k . With this choice of Yo ° Cly) s C'y: » and so after a crude




calculation ft follows that

¢ (R ¢ |( s(R)(Ivgl s1/P(R) +1) + (R))" Ml

Iterating (3.1.29) it follows that

signyo

)
(3.1.31) sBupp u < (R “WJBO]

Y Uy
Jo /Ml

® k
with C1(R) = kEO C]’k(R) . Recalling that Y ® YO(-%) , it follows
that

Pa/(lv4l(a-p))
6 (R) s c(s(R)Uvgl sp/P(R) +1) + (R)) oll-),

The last step in the proof is the “crossover". First an ine-
quality is derived which in the uniformly elliptic case leads to the
conclusion that 1log u ¢ B.M.0. which, in turn, gives the “crossover".
If o 1s not-a doubling measure, this is not sufficient, and one

further iterative procedure is necessary to get the “crossover”.

3.,1.32. Take B8 = 1-p at (3.1.24), and proceed as before but with-
out using inequality (3.1.26) to get

I o® [v 1ogu)Prsc I ¢"(cl +b§’ » (-1 +b,)

+¢" vl 2y + Wl .

e ke Ll




< eI

calculation it follows that

k/ p/
c] ,k(R) s C lYkl(s(R)(lYoi Sl/p(R) +1) + t(R)) lYkI .

Iterating (3.1.29) it follows that

(3.1.31) sBup u s(Cl(R) WJB u m) ,
e P
[ ]

k
X ) x(R) . Recalling that v, = vo(R) . it follows
that

pa/(lvgl(a-p)
C,(R) < c(s(R)(Iyo[ s;/p(R) +1) + t(R)) Yol .

The last step in the proof is the "crossover”. First an ine-
quality is derived which in the uniformly elliptic case leads to the
conclusion that log u ¢ B.M.0. which, in turn, gives the “crossover".
If o is not-a doubling measure, this is not sufficient, and one

further iterative procedure is necessary to get the "crossover".

3.1.32. Take B = 1-p at (3.1.24), and proceed as before but with-
out using inequality (3.1.26) to get

I o° 19 Togu)Pr s ¢ I op(C«I *b'; y(e-1) +b,)

+ "1 (ool 2y + (WlPw




Choose ¢ ¢ C;(B(xo.R)) such that 0s¢ <1, ¢=1 on sz
and |Vo| < ZI(R-pz) = R°1(2/(1-82) , SO [

B 17toul® 5 cHRL(EY -
f2

where
. 1 p y{p- P p-1
H(R) = 1 + ;TB-;). JBR [(c, +by A P )+b2)R + 3, R ] .

Using inequality (3.1.5) it follows that

(3.1.33)' I |1og %IF w s ¢ K(R) m(BR) ’
sz
where K(R) = p(R) H(R) + q(R) and k= m‘:z-)—L (log u) ® -
Pz .

To derive the inequality needed in the final iteration let the
test function be

| 8
o =v u""(lvl'3 + (‘E_QT) ) exp(-bg u) »

where n«CE(BR) , n20, v-1ogyk-. k as above, and B 2 1.
Repeated applications of Proposition 2.2.2 show that ¢ e H:)’p(a(xo,k))

with
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8
L m"'1 Vnu"p(lVlB + (-‘%) )exp(-b0 u)

8
-nP u'pvu((p-l)(lvlB + (%) )- 8lvi®! sign v)exp(-b0 u)

B
- bur'ﬂ)u‘l'p(lvlB + (%) ) exp(-b0 u)Vu .

3.1.34. Substituting this in 3.1.3 and letting E = exp(-bo u) , it
follows that

Inp u'pE((p-‘l)(lv'lB + (%)B) - BIVIB'] sign v)Vu <A

=p I“p-l u"”s(\vls + (-pﬁf-]-)s) T - A .

- b, [ WP u]'pE(IVIB + (%)B) Yu <A
+ I P t.|]'pE(|v|B + (-FE;BT)B) B .

Use the structure inequalities (3.1.2) and BE-Q'I- |v|3'1 <
8
[v|P + (-DE_%) to get
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‘9:;})-2' f nP u'.pi‘Nlp E(lVIB + ('51‘)8) A

”

<P I nPe(vi® *‘(-ET)B) ¢
o [ o (o (BB ™
vo [ et + CEY) o ;
- by ['n" PE(vI® + (%ﬂ-)a)lwl" A
+ g [o® e(vi® + (é’-_@T)s) ¢
+ by ] P u“"a(lle + (f%)a)lVUlp A
AL T ) el oy
o [ oP e+ (f,%-)s) by -

3.1.35. The fourth and sixth terms cancel. Eliminate E , multiply
by Rp , use Young's inequality as before, and recall that Vv =

u'1 vu to get

@ o tol? (P + ()

8
ce | (we+ () YioP £+ # [lP0) -

8/p\p
Use |v|'s < (lle/p + (-E_QT) ) , ye=8+p-1 (8 21) on the right

8
and aMB" s |v|B + (%) on the left to get




RP I " IVVY/PIP A

8/p\p
s cv”j(lvl*’pw,_;%) ) (n® Fp + RP [P a) .

Use inequality (3.1.6) on the FR term with ¢ =

8/p . '
n(lv[Y/p + (é@%) ) and ¢! = 2cy® 2 1 and then cancel gradient '
terms to get ‘

- B\P
R"Inp /PP a s o J (e sp(R)nP + &P [wm]) (J[Y/P + (%) ) o
; = /P
Use inequality (3.1.4) with ¢ = nv to get
1/q
1 J q,.,,vq/p
no|v @
(BIB'RT n vl )

s S(R)(RC%E')'I(&:'G sR)nP + RP [ (P) (Jv|" + (3‘%)8) w

Let B = B(x,r) , r, = R(8,-(8,-0.)27) , k=0,1,... .
Pick n, « C;(Bk) such that 0 sn <1, n, =1 on B, ., and
Ivnkl < ok+2 /(R(ez-e])). and let v, = p(q/p)k . This gives
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gy, )™

R
k+) By mk

s cz,k(a)(;(—;;ﬂak 'K ( L) u)

/v
k+2 \p k
= P pl.-S 2 P
with €, (R) c(s (R) ] (ek Sp(R) + (92‘91) )+ ¢ (R))
Recalling the definition of ¢ jt follows that

k/ 1/
Cz.k(R) sc Yk(sP(R)(sF(R)i-'I) +tp(R)) " , c21.

W/~
M"‘) " n] -

Use Minkowski's inequality to get

Vrin
Ivl‘fkﬂ w) sc Cz’k(R) {(‘-"-{%&7 L

Iterate this to get

Wy
1 Yo+l nel N 1 \/p
(vt e) e e gl v
. | 2

(= k

k+] k

j_(,(k‘,‘j ¢, (R

n
Gl 21 50 1 (k ¢ (R)yy 8 2 vy I n Cu® =

©n g“o €2 B = ¢ v (SR (Y/P(R) +1) +ria) ()

Let C(R) = c(s(k)(s}"’(a) #1) + t(RV(AP) | then




(R%}TJ; v ) ]‘CZ(R)KJ(%;TL |v|pw)llp+yn:|_ :

n+l p2

Given s 2 p , then Yn S5 < Ypuy for some n 20 . Use Holder's

inequality, ‘”(Bnﬂ)/“’(BR).“ and Bp c B

. n+] to get

(3.1.36) (57 L IVISm)]/s < cz(R)[(m}p- jB LR 5] .

" P2
Expanding e* ina Taylor series, it follows that

© g
e Lp] vy - T (e fsp1 vIsa).

Use Holder's inequality on the first [p] terms and (3.1.36) on the

rest to get

e s 1/p s
W}?Lﬁ "o < 1 w(Gay ijz MPa) +s)

® .5

The series § 2—!- (x+s)® converges and is bounded by ce* if
s=0

b<e , so

' 1/p
1 ajv| 1 p ~1.-1
m—(—”R L e?l sc exp(m—(——)-BR L {v] m) if ace’C, (R) 4

P P2 4
c(p(R)H(R)+q(R)) :

< ce

since (3.1.33) holds. Finally,




1 1 *a
NRJB “““"mBR JB efd logu
< ceSPIRMRIMQ(RY) 22
and so
1/a 1/a
1 a 1 -2
(3.1.37) (;-(-FR)- L u a)) (m-;)— IB u (n)

" )|

¢ ceS(P(RIK(R)+q(R)) /2
if a< e"C?(R) .

3.1.38. Let o from 3.1.30 be e"CE‘(R) so that 3a such that
po/q < a <o and (3.1.31) holds with Yo " ta. N‘lt!.l this choice
of y, it follows that lyols}”’(k) s 1 so that C,(R) <

e(s(R) +t(RYPY e 1(a-PD | comining (3.1.31) and (3.1.37) 4t

now follows that

sup u s C(R) inf u
B Bp

e _cls(R)(s}/P(R)+1)+¢(R) Y/ (3-P)
with C(R) = [(s(R) +t(RDexp(p(RIH(R) + q(RN] " °F

since it was assumed that s(R) = 2 for simplicity. B

LA g e

Proof of Corollary 3.1.12. It is easy to see that if u 1is a solution

of (3.1.1), then -u 1is a solution of an equation which is almost




jdentical to (3.1.1) and which satisfies conditions (3.1.2). Because
of this it is only necessary to deal with essential minima.

Since a; = a, = b2 = b3 T TC, 0, it is seen that
V-c 1is a solution for any constant ¢ . Assume V has an essen-

tial minimum at Xg and let u=V - inf V, and apply Theorem
B(xO,R)

3.1.10 forany 8, 0<8 <1, to show that

V - inf VsCR) inf V- V)

sup inf
B(xo.BR) B(xo,R) B(xo,eR) B(xO.R)
=0 .

andso V= inf V=1infV a.e. in B(xo.eR) . But then the set
B(XO’R) Q .

of points where V achieves its essential minimum is both open and
closed so the connectedness of N implies that V= jnf V a.e.

Q
in 2. B8

Proof of Corollary 3.1.13. Let u = u+K(R) and define

emt——

A(x,u,vu) = A(x , u-K(R) , vu)
and
B(x,u,%0) = B(x , u-K(R) ,vu) ,

so that
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1A(x.90)] = |A(xou,7u)| {
s uIVul':"'l + a]uﬂ"l +a,
s ulvﬁl"“ + (a, +a2K'(p"”(R)) all

Similarly,

|B(x,3,70) | s boAlva|P+ byloa| P + (b, +b, kP (ry 3P

and
A(x,u,vd) +va 2 A |valP? - (c]+c2K'p(R))ﬁ P

and divA=§ .
Now apply Theorem 3.1.10 to u to get

sup usC(R) inf u,
B(xo,GR) B(xo,GR)

and (3.1.14) follows. B

Proof of Theorem 3.1.15. let u, *=u-1infu, U, *supu-u, B.*
Proof of Theorem 3.1.15, 1 8 2" % r
B(xovr)b r r
ll(x "-'l ,Vﬁ]) = A(x ,G.‘ +1an u .vﬁ.l) .
r
Az(x ’62 ) Vi,) = A(x ,sBup u -ﬁz s =T,) o
r

and similarly for Ei » 1=1,2, sothat u; , 1=1,2, are

solutions to the equations div Ai = Bi , 1=1,2, which satisfy

the structure




e R N

lA,l s u‘vai‘p-] + (a]M'*az) ’ ’

- - 1 p-1
(841 s bA[va [P + by |75, P77 + (b M +Dy)

Ai -vii 2 A Ivﬁilp - (clM-+c2) .

Now apply Corollary 3.1.13 to get that

sup ﬁi < C(r) inf ﬁi + (C{r)-1)K(r) for O<rsR.
BTB Bre

i o PSR e e R R

Adding thése inequalities gives

Osc u + Osc u s C(r)(0Osc u - Osc u) + 2(C(r)=1) K(r) ,
Bre Br Br Bre

and so

Osc u s %{E%E% (Osc u + 2 K(r)) .
Bre Br

Now apply Lemma 3.1.16 to finish. B

Proof of Lemma 3.1.16. Iterating (3.1.18) easily gives (3.1.19).
Assume (3.1.20), so

n=1 C{r,)-1 n= 2
(3.1.39) log kEO T T s kgo log(1 - ET?;sz)
i n~-1 1 n-1 1
vk T VL T
n-1

since C(rk) 21,8 I a, + 0 . Furthermore,
k=0
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n-1 n-1 n-1 n-1 n-1 )
; (3.1.40) 2 jZO K(rj) kEj 3 = jZN K(rj)(c(rj)-1)(k'§+1 3 - kEj 3
N-1 n-1
+2 JZO K(ri) kE:j a

< ;:B K(rj)c(rj)

. 2 n-1 )Ni] K( ) (j;[] )-]
O 3 I a r. a ’
ks0 K/ 330 I “keg K

so given ¢ > 0]. pick N such that K(rj)C(rj) <eg for j2N.
“-

Then, since 1 a + 0 as n+o , it is possible to pick n> N
k=0

so that the second term is less than ¢ . Therefore (3.1.21) is

proven.

o«
1
To prove 3.1.22, first assume that <® , so from
n-1 kZO Ctry ] =1
(3.1.39) it follows that T a, 2C>0,andso T a
k=0 K k=0 "
to a strictly positive number since a < 1 . It is possible to

converges

N TR L L e e S TTTAS AT o1 AN B Y

choose u such that

Osc:u=ak Osc u , k=1,2,...,

L k-1
a
but then 1imOsc u= I 3 Osc u > 0 . The other possibility is
e Br k=0 Br
n

that C(rk)K(rk) 2¢>0, in which case pick u such that

%cu-e-(l-g-)c.
B
*x




e s (1-2)CirK(r) s (C(r) -1)K(r,) 1

by (3.1.17), and so

e(l -ak) s 2, K(r';) and € < ak(e +2K(rk)) R

satisfying (3.1.18).

S oz T gpp - aqRe A T .. A

To prove (3.1.23), pick M, ¢, a > 0 such that C(rk) <M,
K(r,) s crt . k=0,1,2,...

= 2 -2—3 Sb
ak 1'crk+]s1‘M+] a e

for some b > 0 , and so

n-1 . .
Oscusa™ oscu+ack § 03"
Br BR J'=0
" 1
n- .
s (eR)™ r: Oscu + 2cR o™ 3 (o)
J=0
al
<c' n
for some c¢', a' >0, since
r]_;TE a-b > 0
n-1 . ) ;
1 O(G'b)‘]swn a=b 3
J=0 i
{ C” e(u—b)n a-b <0

To prove sharpness first assume that C(rk) is not bounded so that

P

the monotonicity assumption gives c(rk) + o, Now pick u such
that




Oscu =2,y Osc u ,

B
Tk a"k-l
so that
n-1
Oscu= 1 a Osc u .
B k=0 B
* r

1f Osc u scr‘:: » then

n-1 ce"aau :
kfo L s-ﬁ———-BsRc u

Pick N such that e°<csak<1 for k2N, so

N
n ak)an-N < c.em .
k=0

and then
n
(-5%) < ¢’
for n 2 N, which is impossible since 6 > 8% . To show the neces-

sity of K(rk) s e, pick u such that (3.1.19) is satisfied

o

with equality. Assume Oscuscr n=0,1,... , so that

B L
"
<« a __ o
] Cra1 " ¢7, zgscu
n
n-1 n-1 n-1
« T a, Oscu+? 1 K(rj) n a,
k=0 Br j=0 k=J
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2
2 2an_] K(rn_]) 2201 - aT)K(rnﬂ) ,

O =
and K(rk)sc L 1,2,.000 &
Finally, assuming that C(r) is nondecreasing and K(r) is

nonincreasing as r+ 0 , it follows that

n-1 n-1 n-1 "k
el 5 log 3 -3 ]/(c(rk» ~C k;j L (1/7(C(r))dr/r
nakaes < e kgj < e k"’]
k=J
R
where c = (logé ') , and so
nil 2 < e-c(g(rn)-g(rj)) '
k=J
h (r) = R 1 dr
wnere g(r -L-c-(?y-r.
Also,
n-1 n-1 n-1 -c(g(rn)-g(rj))
JZO K(rJ) kgj a s jgo I((rj) e
<c e-cg(r“) n? Jﬁ k() ec9(s) &
J=0 rjﬂ
- R
et | e regrecels) 1guis)) os 1
n
- g(r )
=ce 9lry) J ! y°g'1(t) et dt , .

where vy(s) = C(s)K(-;-) ,» SO that
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A ini 3 D i i e e O 31 o A L e
3

4
e b DRy Zria et < e o nly

- g(r )
Oscuse cg(r")(OSC u+ 2 J "
B 0

B8
n R

yeg l(t)ectat) . @

Boundary Continuity
In this section solutions which take on continuous boundary

values in a weak sense will be shown to do so continuously. The
definition of weak boundary values adopted is that introduced by
Gariepy and Ziemer [GZ]. The local nature of this condition is more
appropriate and less restrictive than the more usual global condi-
tion that u-f ¢ “g.p(n) for boundary values f ¢ w"P(n') ,
@cq' and f continuous in Q' -Q . In Proposition 2.2.86 it is
shown that under certain circumstances the two are equivalent.

For (u,%u) ¢ w""(n) v Xg € 0 and £ ¢ R , it is said

Toc
that

(3.1.41) u(xo) s £ weakly

if for every K> & there is an r > 0 such that n(u-k)+ €
H&’p(ﬂ) for all n ¢ d;(B(xo,r)) . The condition

(3.1.42) u(xo) 2 L weakly

is defined analogously and u(xo) = 2 weakly if both (3.1.41) and
(3.1.42) hold.

Throughout this section it will be assumed that Q, Q' are
open with § < Q' , and that u, A, ajs Cyo 1=1,2, by,
1=1,2,3 are defined in Q' .

Suppose that u is a bounded weak solution of (3.1.1) in Q
and that Xg ¢ 30 and u(xo) s 2 weakly. For k > let
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(U‘k)+ ’ Q
e

so for some R >0
(3.1.43) nuy € H'P@)  if e Co(Blxg.R)

In the setting of 3.1.48 it is shown that given R > 0 , (3.1.43)

holds for all k > sup f . In any case, Theorem 3.1.44 holds
B(xo :r)ﬂan

for any R, k for which (3.1.43) holds. It will be assumed that
the Sobolev inequalities (3.1.4), (3.1.5), (3.1.6) hold for

0 <r s R, where

Flr) = rp[(c1+c2)K‘P(r) + b? A‘(D'l) + (b2+b3)K-(p-])(r)

+ (a]+az)p/(p-1) kP (r) u-p/(p-l)]

for some functfon K(r) , 0 <K(r)s<1.

Let u(r) = B(i:?r) u, and u = u(r) +K(r) - u -

3.1.44 Theorem. If u 1s a bounded weak solution of (3.1.1) in

Q with |u] <M, x;¢3 and u(xg) <2 weakly, and
ne¢ d;(B(xo »7/2)) , with W] < % and r < R, then

er|vman°x

5 ((r) KD - w5+ KW - 6(r) wlBlxgr)

T

S 2 AT TR e T A N TN



where

e(s(r)(s}/P(r)e1)+t(r) ¥ (9-7)
G(r) = [(s(r)+t(r)) exp(p(r)H(r)+q(r))] rse '

and
H(r) = 1 + ;'(;—yIB (Leqre K P(r) +08 X(P1Ds (byet )k (P1)(r) 3rP
r
r + (q +a2)K'(p'”(r) 1y
8, = 8(x0.r) . ¢ depends onlyon p, q,M,C .

Definition. If K e Q' 1is compact, then
C,(K) = inf{]' 1%]°2: 6 e@) s 621 on K} .

3.1.45 Theorem. Suppose u 1{s a bounded solution of (3.1.1) in
a and Jul sM, x5c2n and u(x)) = & weakly. If

1/(p-1
L(ck B xoo"/4)‘ﬂ)"p ) /(p ) dr

and L K(r) 9;"< o , then

1imsup Ju(x)-2] = 0 .
X-vxo
Xefd

G(r) 1s as in Theorem 3.1.44.

Remarks. Semicontinuity results for sub- and supersolutions and
results on capacitary fine 1imits may be derived as in [GZ].




If u is taken to be quasicontinuous (see 2.2.20), as may
be done if CA(E) = 0= |E|] =0 (a condition which follows from .

the existence of a Poincaré inequality), then

(3.1.47) SUP U = SUP_ U ,

where sup u = inf{te¢R: u<ct a.e.} and sup, u = inf{teR:

uct quasieverywhere} . Theorem 3.1.45 then states that u(x)}»2 as x+x
for all x ¢ 0 outside of a set of capacity zero. (3.1.47) follows

from the fact that u can be approximated pointwise quasievery-

where by ¢« ¢® such that ¢, < Sup u . This is proven in

Proposition 2.2.2.

Modulus of Continuity at the Boundary

3.1.48. Assume f: 3Q +R 1is continuous, and u =-f weakly on
+
V(r) = . sup (u-f(xy))
B(xo.r)nn-
and

M(r) = sup f-f(xo) . a

B(xo.r)nan

From (3.1.51) and (3.1.52) in the proof of Theorem 3.1.45 it follows
that '

S A g o - -

T Tty s




(CA(W)-Q) rP )’/‘P-”
A(r) =

w(B(x5.T)6(r)

when r, k satisfy (3.1.43). But by Lemma 3.1.50 r, k satisfy

(3.1.43) if k> sup f . It is clear that (u-f(xo))+ s
B(xo,r)nan

(u-k)* #k - F(xg) » 50 V(r) s u(r) +k-F(xg) . But (u-k)" s
(u-f(xo)f’ , so u(r) ~-u{r/2) s v(r) -V(r/2) +k -f(xo) , and letting

k + sup f it is seen that
B(xo,r)nan

(V(r) =m(r) +K(r)) A{r) s (V(r) -V(r/2) +m(r) +K(r))
and

V(r/2) s (1 =A(r)(V(r)+K(r)) + (1+A(r)) m(r)

< (1 - AL ) (u(r) +K(r) +am(r)
s (—%{-:%LH-) (V(r) +2K(r))

for €(r) = 87N (r) and R(r) = BLELAME) | it this identifica- 1
tion Lemma 3.1.16 applies. In particular:

3.1.49 Theorem. If A(r) 2c >0 and K(r)tm(r) s cr® for some

sup lu-f(xo)l s er®
B(xo.r)nn




for some o' >0 .

Proof. By Lemma 3.1.16 and the calculations above, it follows that
[]
V(r) s cr®  for some o' >0 . Do the calculations above for -u

and -f to get sup (f(xo)-u)+ ser , a" >0, and the
B(xO,R)nﬂ

result follows. B
3.1.50 Lemma. If u ¢ w,"’(sz) , T:30+ R is continuous with
ug f weakly on 3qQ and Xg € N, r>0, then

n(u-k)* ¢ Wy*P(a)

for k > sup f for all n ¢ C;(B(xo,r))
B(xqsr)nan

Proof. The result follows from a partition of unity argument.

Assume k >  sup f so given X e 3 n Bxgor) 5 3 r>0 s.t.

Fsr and n(u-k)’ e wo'p(n) for e Cy(B(X,7) . The balls
B(x,r/2) cover F(?ETFT n 30 , which is compact, so pick a finite
subcover B, = B(xi.ri/Z) » 1=1,2,...,n. Choose ny ¢
C‘(B(xi.r )) with n; =1 on B, , and let N= (B‘(".?) afl) - U B,
N 1is compact, and N c@ since B'(_:F) n an c U By » SO choose

n
Ny € Co(n) with "0 =1 on N. Since 120 ny zl on 1L-J] By v N,

n
choose ¢ ¢ c;({izo ng > -}) with ¢ =1 on 1U] B, uN . It fol-

Tows that




n1 bt n € cﬂ(n.)
" A
1-z-o L
and
3 Fye0
w- N, *
150 !
on ¥ '8 N. But n (u-k)+ € w"p(n) since Ny e CA(B(x.»ry))
YAt 1 0 i€ LolPtXyeTy

for 1{=1,...,n, and ﬁoec‘a(m » SO

n
W) e b Atk uPia)
n + +
But ¥=1 on B(xo.r) nQ 51”1 By uN, so n(u-k) = np(u-k) e
u;'p(n) for all n ¢ C;(B(xo.r)) , as required. 8

Proof of Theorem 3.1.45. Given k > , it is clear that us
u(r) +K(r) if u =0 . Take n =1 on B(xy,r/4) so R !
on B(xg.r/4) n {U =0} , and

(3.1.51) c)‘(a(xo.%) n {U,=0})

< rPulr) k) P (e -u( ) +KeNPT a(Blxgsr) 6(r)

from (2.2.30), Theorem 3.1.44, and the definition of C)‘ .

If A'- Jimsup u> & , then for k such that 2 < k<p, it
X*Xq

xefd
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"< ey

is clear that u(r) 2 A-k > 0 . Also,

(3.1.52) E'('{O,_)'-Q < B{xg,r) n {u, =0}

by the definition of Uy » SO from (3.1.51) it follows that

1/(p-1
J cx(B(xo,rM)-sz)rp (» )dr

w(B(xg,r) G(r) v

0
< 7 [ (ulr) -utrr2) +k(e 45
0

This is finite since u(r) is monotone increasing and I K(r) %; <o,
0

but then (3.1.46) is contradicted, and so limsup u < % .
X*x%g

Xef
Since -u is a solution of a slightly altered equation which

satisfies the structure inequalities (3.1.2), it is also true that

Jimsup -u s -2 ,
X*Xo

XeQ

which completes the proof. B

Proof of Theorem 3.1.44. Let Vg = @ - (u(r)+K(r)® for 870 .

Given 0 <r<R, R as in (3.1.43), assume ¢ ¢ d;(Br) » B, =

B(xo.r) , and choose n ¢ CZ(BR) so that n =1 on Br‘ nu, e

H%’p(n) ,» SO repeated applications of Proposition 2.2.2 show that

® ¢ H&’p(nfwBr) » where
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b, sign8 u
°'°p"s‘°

b, sign8 +k(r)-
= P(u(r)+k(r)-nu)B - u(r)+k(r)Be O sign8 (u(r)*k(r)-nu,) .

with gradient

b,sign8 u

W = pePy, e 0

.a.1 . bosignu
+8¢pua]we°

bystg i _
+ sign8 b0¢pwa e Yu .

by s1gn8 u
Substitute this in (3.1.3), use E= e » and multiply by

signg to get

I8l fo" aB! vii.ne

= -sign [ o° v, BE - signap [ "y ve-ae

Pw vue

Use the structure inequalities (3.1.2) with the fact that ¢ , Vu ,
and vy are supported in 2 , Yo =0 on {u<k} , and Vu =

Xguak) VU O get

B e L SV e S S UOU SR VI DT S



8| I LT TLBY:

< |8} J o 63'1(c]]u|p+c2) 3
+ by I of wslvﬁlp AE
+ I oP Vg |le"'] b,E
+ [ 4P ugloy 1ulP T +b e
+ pj g} ¢! ¥g lva| P LE
+p I o] oP! v (ay 1ulPT + a0 €
- b, I o° v jva|P A€

+ b, J ¢pxps (N [ulP + cz)E .

The second and the seventh terms cancel. Use

(3.0.83) vy s, JulsM, Vs K'r) , 3= (a,+a2)K‘("'”(r) ,
B« (b2+b3)l('(p'1)(r) . &= (e, )X P(r) L and K(r) <1,

to get
(3.1.54) |g| I oP 0B~ [vulP aE s c(e41) J P BB+ 0)E

+ f oPa® (va(P biE

+p [ 1ol oF" a1l e

. c[ o] ¢°7 G8*PV5e .
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Much of the rest of the proof follows that of Theorem 3.1.10.

Continue as from (3.1.25) with minor changes such as the redefini-

tion of F(r) to get as in (3.1.27) and (3.1.29) that

(3.1.55) P I oP |VﬁY/p|pA s ¢ Cly) I(e’c sF(r)op-'-rpIWlp) ul

e S e~ s

for y#dp-1, y#0, and

Vivyl
Y k+1
(3.1.56) ( ; a k1 a))
of r’ Lkﬂ
v, \VV/lv,l
R e AR IO

k

Vvl
where C,  (r) = c( (r) [C(Yk)( €y F(r)+(2kt:o )p)+ (::;Z)p] + tp(r)) k.

Given a s.t., 0 < a < p-1, iterate as in (3.1.31) with '
-3¢0, to get

(3.1.57) ( j g2 ) sC1(r) nf o,
p

pa/ (q-p)
with Cy(r) = c(s(r) (v, s"’(r)n) +t(r) ol

As in 3.1.38, Yo will be chosen so that

Cylr) < c(s(r)+t(r))pq,|Yo|(q'P) ;|

1f Yo 23> 0 , iterate inequality (3.1.56) only for kg ko ,
where Yko < p=-1 . By choosing 8, and 9, at 3.1.28 slightly
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differently the iteration gives

p/qd 1/a
(3.1.58) («Tﬂ‘? ja u‘“’p) ‘cl(')(ﬂl‘TﬁL a‘)

P P

for § ® Y. < p-1.
0
The “crossover" also follows that of Theorem 3.1.10 closely. Proceed-

ing as from 3.1.32, using (3.1.54) instead of (3.1.24) and letting

* —) Y
l(1 HBFZTJB loguw , it follows that
P2

L
ng Hog]‘{‘l o s c(p(r)i(r) +a(r)) ,
P2

1 - -(p-1 ~(p-1
where H(r) = 1+ 7y Lr([(c1+c2)K Plr) 68 x°(P1)4 (bz+b3): ;" Xr)eP
+ (a]+a2)l('(p'”(r) rp']) . Nowlet ¢ = npw(lvls + (52% )e 0" for
B21 with ne C';(Br) s b = l'l"'p-(1.t(r)-'-l((|r-))]'p , and v = log %1,

l(1 as above, and

w = oo Tong((l® + ())&

N ﬁ'pVﬁ((p-‘l)(Iv]8+ (ﬁ)s) - ewﬁpJ |v|8'] sign v) e-boa

-b.0

- b011p1.v(|v|8 +(-"E'— )e 0" v .

Proceed as from 3.1.34 recalling that ¢ < G]'p and that n, Vu ,




¥ are supported in Q , then continue as in (3.1.53) to get

s o o ) vi® +(;“%)B)
' j o P (viP + (3%‘)8) L
T el (v (&)

+ I o o'P (|v|B *(-p%— B) |vu|p'" by

[ e (o + ()1

Proceed as from 3.1.35 with minor changes as in the redefinition
of F(r) to get

_a J/a _a /2
(3.1.59) (R%J Lp‘ @ o) (Is'(%:)' L,] i a)
< caS(P(r)H(r)+q(r))/a

for ac 0-1 Ci](r) ’ Cz(r) - c(s(r)(s}’p(r) +1) +t(r))Q/(Q‘P) .

Given § s.t. .(%l). %ss < p-1, pick a and ko s.t.
k

0
a% sm‘lu{e'1 c;'(r) ’ S.%l). %}<a and Y"o = a(%) =5 .

Now combine (3.1.57), (3.1.58), and (3.1.59) to get

1 p/a8 -
(m L uq&/pm) < Ca(r) ‘lanf 1

P

[}

-191-




with cs(r) sc CIZ('.) ec(p(r)H(r)-‘-q(r))/a .

Taking »p -!2'— and recalling that u = u(r) -uk+K(r) , it

follows that

p/qé
(3.1.60) (E»_(Bl)' L ged/p w) q < C3(r)(u(r)-u(r/2)+ K(r))
r

-1) 9 -
forlzf-lps6<p].

|| s and o] sc.

and following the usual procedure it is seen that

and

r/2

o el -
For the final step let ¢ = ¢" e U s with ¢ ¢ CO(Br/Z) ,

=b i
ve=pupe”le O ug

-b,0
P 0
e Vux
b i
+ b, ¢P e y Yu, (VU =Ty ),

+é

I¢p VUK°AE = -I ¢p Uy BE - p I ¢p—1 UK V¢ « AE

P .
'bOIq’ "Kv"K AE ,
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I oP IVUklp AE s J op(C}Iulp-+c2)E
° P P
+ by I ¢ uk|Vukl AE

+ I oP uleuklp'] byE

+ I P uk(bzIUIM +b3)E

+p [ 07 (vl uylou, (P ue
+p I ¢p-1 {vo| uk(a]lulp'] +a2)E
- by ] ¢".uk|wkg" AE

+ b, J P uk(c1|u|p~+c2)E .

Cancel the second and seventh terms and use an inequality similar to

(3.1.26), |ul sM, and K(r) <1 to get

P J ® 19, P2
s c(u(r) +K(D KT (r) [ (0P PP Lleyre, DK P(r) + (0400 (P T
,(,1+,2)p/(p-1) WP/ (P=1) 5 Py 4 oP (96]P w)
+ 0P [ o 1P (o, + vel)

Use inequality (3.1.6) with € =1 and & = ¢ on the first expres-

sfon along with Y, * -yl to get

1
i
L]
f

Py
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(3.1.61) P J oP 1931 Px < c(sp(r)+1) (u(r)+(r)) kP~ (r) w(8,)

Plck a > Lz"-} s that 1< (1)p <. Use fnequality

+ r"]#’" Uy |va| P! (¢by + |98[u) .

(3.1.6) with € =1, 8 =407 /P, y*=p(1-a)(p-1) to get

(3.1.62) P I oP " b} (1)

Also,

sJIWHﬂ
s [P Prs elspin 4n) k e
r/2
s-c(sF(r) +1) I GY* o by using 3.1.55.
Br/z

P [ 6P w9017 (b, + 170u)
< u(r) I (6P eV (P=1) (=1 g P-1 ,(p-1)/p
@(1-e)p-1) (¢, + Vo ]u) - (P-1)/p)
< au(r)(rP I oPva®|P 2y (P-1)/P
([ 3P 6] TN 4 alP VP

P )(9-1)/9( L i 0)1/9

< clsptr) +0ur)([ |
r/2 r/2 |

using (3.1.55) , (3.1.62) . | §
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s e(sp(r)+ )] (r R (ulr) ~u(r/2) +K(r)P (8 )

by using (3.1.60).
Combining this with (3.1.61) gives

r ] PI9IP A s clsp(rI)E] (P (P )R (ulr) - Wr/2)+K(r) u(B,.)

Using (3.1.60) once more gives

[ 19(om1° 2
s G(r)(u(r)+K(r))(u(r)~u(r/2)+x(r»p"a«gr) ,
c(s(r)(s:./p(p)ﬂ )+t(,.))Q/(Q-D)

where G(r) < [(s(r)+t(r)) exp(p(r)H(r) +q(r)]
using the assumption in (3.1.6) that s(r) 2 2 .

3.2.0 Modulus of Continuity Estimates for Weighted Sobolev and V.M.0.

Functions

A result of Morrey implies that functions in the unweighted
Sobolev space HI’p(IRd) are H8lder continuous for p>d . In the
present section a similar result is proven for the weighted spaces
H"p(m.v.n) which suhport a weak type of Sobolev inequality. This
result is derived from an estimate for the modulus of continuity of
functions of vanishing mean oscillation which in the unweighted case,
for g(x,r) = cr , is due 1ndependent1y to Campanato [CA] and Meyers
[My2]. It will be used in Section 3.3.0 to establish continuity

for solutions of certain degenerate elliptic systems.
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Functions of Vanishing Mean Oscillation

" Let g: K& R'+R" be Borel measurable and Yet « be a locally

finite positive Borel measure on an open set Q c Rd . For simplicity 1

it will be assumed that : }'i

(3.2.1) w(3B) =0 i

for all balls B with BcQ . The theory is much more technical
without this assumption.
MO, will be the space consisting of functions u: le + R,

9
U ¢ L‘}oc(“"m such that

(322 gy [ 1900 - gy [ u(a) )l duty) = atxur)

for a11 B = B(x,r) , B cQ . The methods used allow for much more

general sets than balls. This restrictive approach was chosen for
simplicity.

To estimate [u(y)-u(z){ for y, ze¢B8, Becq, it is only
necessary to estimate O(x) = fu(x) - R%T L udo| for x ¢ B
since Ju(y) -u(z)] s oly)+o(z) .

To do this it is necessary to introduce some geometry.

Coiir g e g

3.2.3. Assume that x ¢ B = B(xo.R) » and that Fx :8 + [0,R) s
continuous with F;'(0) = x , F3'([0,R) =B , and F;'[0,r) =

|3
L

Bx(r) for 0 <r < R, where Bx(r) is a ball of radius r centered




at cx(r) € I,Rd . The continuity of Fx forces cx(r) to be

continuous in r . Also, assume that |x -cx(r)l < 8r for some
1
6, 0<08 <1, to insure that 1lim J udo = u(x)
- ° : 0 mle(r” 8, (r)

a.e. o . This follows from Propositions 1.1.3 and 1.1,5. and a

covering result of A. P. Morse, page 6 [G]. Points where
the limit above exists will be referred to as Lebesgue
points.

Let a,(r) = m(F;]([O.r)» = w(B,(r)) <= so that :B.x(r) is
a monotone increasing left-continuous function on [0,R] and so
induces a finite Borel measure w  on [0,R] . &x(r) is actually
continuous in r because of (3.2.1), so @  has no atoms. If f,

-ﬂ
E are Borel measurable and f > 0 , then

(3.2.4) L flr)dg, = L_]m FIF, (y)) doly) .
X .

The method of proof of Theorem 3.2.5 involves a reduction to
_ one dimension, where an integration by parts with respect to @ is
carried out. (3.2.4) indicates the flavor of the reduction, the
basic difference being that f(Fx(y)) must be replaced by an
arbitrary function u(y) .

3.2.5 Theorem. If u ¢ MO and x,y are Lebesgue points of u

with respect to o , then




(3.2.6) o(x) = {u(x) - oT(!BTL u do|

R gle,(r)or)
s zg(xogR) +4 NG d@,((r)
0 X
and so

g(c (r),r)
(3.2.7) [ulx)-uly)] < 4(9(x0.R) + J -————;;7:;- -x( r)

r s(c (r),r)
+ r

. AT
0

{r)) .
y Ly

An alternate expression for (3.2.6), (3.2.7) results from (3.2.4)

since
R gte,(r)ur) ale, (F,(2)) , F (2)
R0 I A RCH G 0 et

3.2.8. If, in addition,
g{x,r) = f(w(B(x,r))

for f: IR+ > lR+ continuous, then

(8)
Jut)-uln)| < sista(e) + [ Kol .




Remarks

It should be noted that the assumption that x,y are

Lebesgue points is usually unnecessary. In fact if

IR g(c, (r),7)

du(r) < « then it can be seen from the

0 ulr)
proof of Theorem 3.2.5 that the averages
u'l(Bx(r)) I u dy9 form a cauchy sequence in r and
B, (r)

therefore converge. If the above integral is finite for

all x in some set E then u may be redefined almost

everyvwhere -y in E so that every point is a Lebesgue point.
A typical geometry would be given by defining Fx

implicitly as |y - cx(Fx(y))l - Fx(y), with cx(r) -

T [x=x4] -
x - E(x-xo). B = B(xg,R), —g—— < 1. F(y) is the
positive solution to a quadi:tic and its graph is a skewed

cone with vertex x.

T i i e .




The geometry described at 3.2.3,with x generally off centered

in B8 , is not necessary if » 1is a doubling measure. That is, if
o(B(x,2r)) s ¢ w(B(x,r)) . In this case take x = X ® ¢,(r) and

FX(Y) = Ixo-yl so that for x, y with ]x-yl aR,

(3.2.9) fu(x)-u(y)] s Ju(x) - m JB( ) u do |
Xy

1
+ ) - J{W’R) u do|

+E,

where

£ L

a(B(x,R) w(Bly, JB(x.R) IB(y.R) Julx)-uly)] dis(x) du(y)

C
< ;2—(;7_ L JB lu(x)~U(y')l du(x) daly)

for B = B(%L, 38) , using the doubling condition. Considering
(3.2.10), this can be bounded using (3.2.2).

The continuity of f 1in (3.2.8) is not necessary. If
n(c’n"(B)) = 0, where B {s the set of non-Lebesgue points of f ,
then (3.2.8) still holds.

Proof of Theorem 3.2.5. (3.2.6) will be proven first, then (3.2.7)
will follow immediately.




Assume that u ¢ mg and that x 1{s a Lebesgue point.

(B (r)) >0 forall r>0 since 23, m

udw must be

Lx(r)
defined. For convenience the subscript x will be dropped from ‘T’x
and @, , and B, will be the ball B_.(x) . L Juldo <= since

U e L}oc(m.n) and E_c_n . let f(r) = L udes . f 1is absolutely
r
continuous with respect to o (see 1.1.10) since Ye >0, 36>0

such that if o(A) <86, AcB , then IA lul dw < € , so that given
disjoint intervals I, = [a,ib)) . 1= 1,2,3, ... , with a(y 1) <

8 » then w(R) = Q_(H‘ I,) <&, where A= 19] (Bbi . Bai) o
I 19oy) - flay)] s L luldo <c .

From Proposition 1.1.13 1t follows that f(r) = f[o,r) £ (s) aus) -
Denote % by u. It is easy to see for u,v ¢ L1oc(®@s@) and
Ac¢R that utAv = u+xb a.e. .

It is claimed that [u] s Tu[ . Pick sets F_. F_ disjoint
so that @' , the positive part of @ , is supported on F,iand T ,

the negative part of u , is supported on F_, soO

IE Vs ang fon I&"(Enr,,) ‘e

‘ L.‘(EnF) o g - IEnF v




for all Borel measurable E . Therefore G' s u¥ and S0 luf =
RN ) MPEC Y RN m i

From this it can be seen that
T ,r - -
[ { li(s) - a(t)] dals) do(t)
0 0
P —
s [ 1300 aals) ae)
0
-I [ lulx) - @(t)] do(x) duft)
0 ‘B
r -
- js Ju(x) - @(t)] da(t) du(x)

(3.2.10) sj j lu(x) = uly)] doly) du(x)

: .
[ w0 -y ] v sl wo

ror r

1
' Jsr LJNBJ Lr u(z) do(z) -u(y)| doly) dulx)

s 2%(8,) glc(r)or) by (3.2.2),

a M, - .
$0 :2-(;-)-10 L ju(s)-u(t)| dy(s) dy(t) < 2g(c(r),r) . Now let

r
A(r) » R!"TL U(s) ds , which is absolutely continuous with respect

to g on [e,R) , ¢ >0 by Proposition 1.1.13 since au(r) > 0 for
r

r>0 . Also by differentiating w(r)A(r) = J u(s) ds with respect
0
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to @, as in 1.1.18, it is seen that A(r) +a(r) % (r) = u(r) for
r>0, and so % (r) = ma)‘-(-';?-(-ﬂ . Proposition 1.1.13 is used

several times in the following.

[A(r)-Ale)] = |L ifs) "‘ s} gy(s) | {

. |Ir—2-z-— I ((s)-u(t)) du(t) du(s)i !

s). ]

L T—) I li(s)-a(t)] du(t) dals)

p=r

r ju(s)-u(t)] du(t) dm(s)‘

r
+2 L 53-(-5—)- r lu(p)-u(t)| dm(t)dm(a)) du(s)

szg(c(r).r)uL slelis) ) |

and the result follows by letting ¢ + 0 since

A(e) -(—)-r —(-—yL ude + u(x)

since x s assumed to be a Lebesgue point of u with respect to w .
To prove 3.2.8, let

6(r) = g(') ) g5 , ]

(¢)

6 1s absolutely continuous with respect to w since




a(b,) .
ACCRECIRIED E(ai) e as < w ] aragby) -
i

d6 _ fla(r

Differentiate using (1.1.33)' to get Y =y S0 that

r - .
G(r) = L f g: do(s) . Let € +0 to finish the proof. B

Continuity of Sobolev Functions

Let o ¢ R

be an open set and let w, v be locally finite
positive Borel measures on @ with v absolutely continuous to w .

Let W''P(w,v,2) be the Sobolev space defined in 2.2.1 with p21 .

3.2.11 Theorem. Assume that u ¢ H‘ ’p(m.v.n) and that the Sobolev

inequality

(3.2.12) Yol ) - 2k [ uly) doly)] doli)
By Jy 190 - Tay Jy
1
s l((x,r)q8 |vu|P dv)/p

holds for every B = B(x,r) with 8 cQ . Then, assuming the

structure of Theorem 3.2.5,

R ke, (r)ur)
[u(x)-uly)| < 4(K(XO,R) +L _—:);ﬁ'-,— dgx(r)

r K(c,(r),r)
+

1/p
S ) (17 )

0




if x, y are Lebesgue points of u with respect to o .
If, in addition, K(x,r) = f(u(B(x,r)) for f:R  + R'

continuous, then

B(x.,R
(3.203)  [u(x)-uly)| s a(ﬁm(s(xo.am + [: (8- fs) ds)

(f

Proof. Apply Theorem 3.2.5 with

1/p
|ou|? du)

(XO’R)

g(x,r) = K(x.r)(f vl P dv)”p .

B(xo.R

Remarks. Theorem 3.2.11 is true in the more general setting of

Section 2.1.0.
By applying Holder's inequality, it is seen that the inequality

] .
(3.2.14) mL [#(x) Wfs #(y) doly) P du(x)

s K(x.r) L 717 av
for all B = B(x,r) with 8 cq andall ¢ ¢ H"p(m.v.n) s suffi-
cient for (3.2.12) to hold. A limiting argument shows that (3.2.14)

need only be assumed for ¢ ¢ C (@) . In Theorem 2.2.41 it is seen
that (3.2.14) 1s equivalent to
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(3.2.15) %%33}1 < ¢ K(x,r) &, (KnB)

.

for compact sets K ¢ Q@ (recall that B cq so (%'(n)lB = cﬁ(g)l ).
' B

Example. If K is as in the example preceeding Lemma 3.1.16
and w(x) = v(x) dist®(x.K) ' :

with a > -y , then (3.2.13) holds with K(x,r) = cro "/ P(B(x,r))

by Theorem 2.2.56 (specifically (2.2.62) and (2.2.63)). As in
(2.2.70) it is seen that

w(B(x,r)) ~ rd max®(r , dist(x,X)} .

If « 20, then L ca(B(x,r)) , so K(x,r) = crm'”p(s(x,r))s
f(a(B(x,r))) for f(t) = ctP = El_u - % . If p>dta,

apply (3.2.13) to get

lux)-uly)| < ca®(B(xy.R))
sc Rm‘l max“B{R .dist(xo,l()} ’
so0 u f{s Hélder continuous.
If a<0, then

rd < w(B(x,r)) maxlul(r ,dist(x,K)}
s ¢ a(B(x,r))

for bounded r, x , so a sitmilar argument shows that u 1is Hilder




v ey
e

continuous if p>d .

It is interesting to note that there is some additional regular- ’
ity at R in the case of a < 0 . A careful analysis of the proof
of Theorem 3.2.11 shows that

ju(x) - W]BT L u df s cr!-(dHa)/p , B =B(x,r),

if p>dta and x ¢ K, where u(x) has been redefined on K in
the natural way, that is, u(x) is defined as the 1imit of the

averages u do .

)
w(B(x,r 8(x|r)
3.3.0 Higher Integrability for the Gradient of Solutions of £1liptic

Systems with Application to Continuity of Solutions

Solutions u of second order quasilinear degenerate elliptic

systems are considered. It {s assumed that u ¢ H};ﬁ(’u.n) » where
p 1s the natural exponent for the equation. Then it is shown that
ol ¢ '-m("-“) . In the case of Lebesgue measure with u = 1 , this
can be used to show that u {s Hlder continuous in the borderline
case d-c < p<sd . In the weighted case the critical exponent may
change but continuity is still achieved. The analysis also applies %

to higher order equations. The basic method is due to 4

" N. Meyers and A. Elcrat [MYE] (u=l).

The equations considered are:

(3.3.1) v ~A1(x.u.Vu) = Bi(x,u.Vu) R i=1,...,N,
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where

A:ﬂmedeN-led . . ﬁ

and i

dN

8: anleR + R

are Borel measurable functions satisfying the conditions:
7 |A(x,u,%u)] s a lep-l +a
; A o ™o

(3.3.2) 1 ; [B4(x,u,7u)| s b1u|Vu|p'] + by ,

. P.

where u = (u1 . "N) » Vu= (Vuy, ., VUN) » 3521 is a
constant, and u, g, b.| ’ b2 » Cy are nonnegative Borel measurable
functions on the open set Q@ . It is assumed that 0 <y <o a.e.
and that u 'induces a locally finite measure « which is doubling,
that is, w(E) = I u and o(B(x,2r) < cmm(B(x,r)) . It is also
assumed that thereEis an a >0 such that

(3.3.3)  ay e LRI gy |y 1BS (SR g
b, « L%‘(:s'”m (1,Q) , and ¢ e L};z (u2)

where s i{s given in (3.3.4), (3.3.5).
In some cases these conditions can be weakened by using other

Sobolev inequalities in combinations with those in (3.3.4), (3.3.9).
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N
Let wu;p(;..n) 11!1 N-l 'p(u.u.n) ’ ”}éz(u»v»ﬂ) as defined in

2.2.1. A pair (u,%u) ¢ Hlap(u.n) is said to be a weak solution of
(3.3.1) if

; I VQ.I °Ai(xoUQVU) + ¢i B(x.Q.VU) =0

for all ¢ ¢ NA'p(u.n) .
It will be assumed that the following Sobolev inequalities hold
for p, q, s with 1<q<pc<s.

' (3.3.4) (&T‘ET L o - @L AL m)m

1/q

1 q

ss]r(m--(—)-B L |99 dw

for all ¢ ¢ H1 P(u.n) and all balls B with diameter r, Bc Q;

(3.3.5) (FGTI lo - WL ¢ du|’ do /8

s szr(—(-ﬂ-L |ve)|P dm)

for all ¢ ¢ H];’(u.n) and all balls B with diameter r, B c @ .
It 1s of course only necessary to assume (3.3.4), (3.3.5) for
" functions and then the usual limit procedures allow genera)
Sobolev functions. Conditions for Sobolev inequalities of the form
(3.3_.4). (3.3.5) are discussed for scalar-valued functions in Section

2.2.0. The vector-valued case is an obvious corollary. For certain
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s >p, inequality (3.3.5) follows from inequality (3.3.4) as in the

proof of Theorem 2.2.56. A simple consequence of inequality (3.3.5) is
that 1f © ¢ u,;”(u.n)  then o ¢ L3pcus) -

The analysis of the equations will produce a “reverse Hglder”
type of maximal function inequality from which the higher integrability
of the gradient will follow.

3.3.6 Theorem. If (u,Vu) is a weak solution of (3.3.1) in a
bounded open set 0 < le » then there exists ¢ > 0 so that

|u| e Lloc("’n) € depends only on d, p » 9,5, 2, ¢ ,a,

519 52.

Remark. As in [MYE], if (u,Vu) e N;’p(u.n) and certain weak as-
sumptions are made about 3q , then [u| € Lp+€(g) .

Proof. Let Q,» Ql’ Q0 be concentric cubes, QOS_Q with side
lengths S_, 2S_,, 35S, respectively, as in section 2.3.0.
Bstimates will be made over balls B' = B(x,r), x € Q,, r<S,/2,
using test functions of the form ¢ = ¢(u-k) where ¢ is a

function such that

(3.3.7) ¢ € Cy(B(x,2r), 0 < ¢ <1,¢=1onB',[|Ve|< 2/r.

These calculations will yield the inequality

(3.5.8) M eH ) < c M@ + 1rahH; + Fy)

for y € Q1 and R = S_/2 where Mp,M are as defined in section

CmeaRe




2.3.0, g = |Vu|?, q = p/q and c depends only on ags Sy

Sys P d, €' and F € Ll’a'(M,Ql) for some o' > 0, a'
dependent only on a, s, p.

Using propositions 1.1.3, 1.1.4, 1.1.5 and 1.1.9 to &
show that F < M(F) a.e and letting f = F}/9 it follows that

"R(ga) <c M&(g) + M(fﬁ) + % M(ga) a.e. in Q; .

Applying Theorem 2.3.3 it is clear that |Vu] éLp*E(QQ) for
some € > 0 dependent only on d, p, q, S, 8gs C,»%, S3s Sy,
p+e
so |[Vu| € Lioc (M:9) .
To prove 3.3.8 let K = w 1(B) Ludw, B = B(x,2r),

v = u-k and ¢ = ¢pv, ¢ as above. Take
v =po” ) vov + 4P wy
so that (2,V0) « N&'p(u.n) by Proposition 2.2.2, and
);I [p¢"'1 vi Vo oAy + P Vvi'- A+ P 7 81] =0 .

Rearranging terms and using the structure conditions (3.3.2), it
follows that

e

I o® [vulPu sI o° cpu
p-1 p-1
vagp [ 7 190l Il 19ul™
+p [ o" 1%l Iv] a

+]JIHIWPwa

+ I ¢ 1v] by .




Younges' inequality implies that
oV 1vel (vl (90”7 s P nufP + P qug® (v
vl 19u]P" by s e fvulP + e (PT) yjP B
Applying these with ¢ = min{ %, (4a°p)'1} , absorbing the gradient

terms into the term on the left-hand side, using Holder's inequality

on three of the remaining terms and recalling (3.3.7), it follows that
p -pI p
vu c + cr
L.l |uSIB ¥ BIVI u
1/s (s-1)/s
-1 s s/(s-1)
ter (IB |V| l-l) (IB a] l-l)

+ c:([B lv|® u)P/t (L b!;l,t/(t-p) u)(t-p)/t

o

B

1

|vlt u) /t(IB b;/(t-t)u )(t-'l)/t

bt _ bps s
for some t < s such that 7 <7 te ad 75 < Tyta.
Finally, use inequality (3.3.4) on the second term, inequality
(3.3.5) on the third, followed by an application of Younges' inequality

and recall that «(B) s ¢ Cy o(B') to get that

v
i



oy -
H

T L, 19]® R%)'L R L |WI“u)p/q

ve gy [ 1P

+ Q(Jb. L a?/(s-‘]) u)P(S-U/(P-l)s
+ c(;.(ln_ L |V|tu)p/t ( El%')' L b,lat/(t-p) u)(t-P)/t
+(z3y L Mtu)”t (;(‘EYL SN

Taking the supremum over r, 0<r<S_/Z and letting €= ,i/z,

(t-1)/t

jVuI? =g, q=p/qand R = S /2 it is clear that 3.3.8 is
verified with

FI) = c(M (c)(y) + (S p-Ds (s/(s-1)y
t - -
+ WYy Yy y) mEPIE ot/ (o)

Y4a!
and F ¢ L ("’Q'I) for some o' > 0 because of Propositions 1.1.3,

1.1.4, assumtion 3.3.3, and the fact that {v] ¢ L?oc(u.n) » which

follows from inequality 3.3.5. The proof is completed as in 3.3.8. §




-

Continuity of Solutions

Suppose the measure « 1s fixed and there is a critical exponent
Po where the constant K(x,r) in the Sobolev inequality (3.2.12) is
bounded for p 2 Po and unbounded for p < Py - (If o is Lebesgue
measure, then Py = d.) If 3 ad « (as in (3.3.2), (3.3.3))
are fixed and only equations satisfying this structure are considered,
then under fairly general circumstances the ¢ given in Theorem 3.3.6
will depend continuously on p so that estimates on the modulus of
continuity for solutions u can be derived for p > po-e' » With
¢' > 0 dependent only on Pg* 3 @5 d , and the measure o .

For siﬁpIicity only the borderline case p = Po will be considered.

3.3.9 Corollary. Suppose u, Vu, @, ¢ are as in Theorem 3.3.6

and

(3.3.10) ;ﬁngﬂn-;&7L¢u)muudmn
P 1/p
< K(J; |ve| O dh)) 0

for all ¢ « W:Puu.0) and all balls B with Beo. If x,y

are Lebesgue points of u with respect to o , such that leo.RS 3
Q for Xo * 5%1 and R = 15%!L » then
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Pyt2e P
(3.3.11) Ju(x)-uly)] < 8 /d(—-qé-—)KUB |vu| 0

/(pgte)
@ 0 (BlxgR)) .

Remark. Conditions for (3.3.10) to hold are discussed in the remark
after_Theorem 3.2.11.

Example. In the example developed after Theorem 3.2.11, it is easy
to see that the critical exponent is d if a <0 and d+a if

d lﬂaxa{r .dist(X.K)} s O > -Y e d .

a20. Also, since w(B(x,r)) ~ r
it follows from Corollary 3.3.9 that H8lder continuity can be es-

fabl {shed for solutions in the borderiline cases.

Proof of Corollary 3.3.9. u = (u1 seees Uyg) SO

Ei%T'j; luy(x) - ;f%S'L; uy(y) daly)| du(x)

P 1/p
< K(L [vusl 04p) O

e/(pyt+e) pre  \1/(pate)
ska O @ ([ Ivl 0 w) O
B
Given x, y ¢ 0, Lebesgue points of u with respect tow ,
and a ball B(xo.R) such that B!xo.RS < and x,Yy e B(xo.R) .
use the geometry described in the first remark after Theorem 3.2.5

and apply the second part of Theorem 3.2.5 with
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Pate  \1/(pyte) e/p,te
f(x) = K(L( R)IVUI 0 dm) 07" "0

Xo.

to conclude that

Jug(x)-uy(y)|

+¢ '|/(P0+e) e/(Pd"e)

<o(B2e) ([ 1m0 @) 0 WO (B

Now let x, -»%1 and R+ Ji?—‘- in such a way that x,y
remain in B(xo.R) so that (3.3.11) is verified. 8
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